467 resultados para composite function
Resumo:
Buckling of discretely stiffened composite cylindrical panels made of repeated sublaminate construction is studied using a finite element method. In repeated sublaminate construction, a full laminate is obtained by repeating a basic sublaminate, which has a smaller number of plies. This paper deals with the determination of the optimum lay-up for buckling by ranking of such stiffened (longitudinal and hoop) composite cylindrical panels. For this purpose we use the particularized form of a four-noded, 48 degrees of freedom doubly curved quadrilateral thin shell finite element together with a fully compatible two-noded, 16 degrees of freedom composite stiffener element. The computer program developed has been used, after extensive checking for correctness, to obtain an optimum orientation scheme of the plies in the sublaminate so as to achieve maximum buckling load for a specified thickness of typical stiffened composite cylindrical panels.
Resumo:
The role of inter-subunit interactions in maintaining optimal catalytic activity in triosephosphate isomerase (TIM) has been probed, using the Plasmodium falciparum enzyme as a model. Examination of subunit interface contacts in the crystal structures suggests that residue 75 (Thr, conserved) and residue 13 (Cys, variable) make the largest number of inter-subunit contacts. The mutants Cys13Asp (C13D) and Cys13Glu (C13E) have been constructed and display significant reduction in catalytic activity when compared with wild-type (WT) enzyme (similar to 7.4-fold decrease in k(cat) for the C13D and similar to 3.3-fold for the C13E mutants). Analytical gel filtration demonstrates that the C13D mutant dissociates at concentrations < 1.25 mu M, whereas the WT and the C13E enzymes retain the dimeric structure. The order of stability of the mutants in the presence of chemical denaturants, like urea and guanidium chloride, is WT > Cys13Glu > Cys13Asp. Irreversible thermal precipitation temperatures follow the same order as well. Modeling studies establish that the Cys13Asp mutation is likely to cause a significantly greater structural perturbation than Cys13Glu. Analysis of sequence and structural data for TIMs from diverse sources suggests that residues 13 and 82 form a pair of proximal sites, in which a limited number of residue pairs may be accommodated.
Resumo:
A previous study on the tribological performance of a compression-moulded aramid fibre-phenolic resin composite, containing 30% continuous fibre, showed that this composite provides a reasonable combination of the friction coefficient and wear rate to be used as a friction component, such as a brake shoe. In the present work, the effect of sliding speed on the friction and wear behaviour of this composite has been investigated. The sliding experiments were conducted in a speed range of 0.1-6 m s(-1) at two normal pressure levels of 1.0 and 4.9 MPa. The coefficient of friction was found to be stable over a wide range of sliding speeds and normal pressures. The wear of the composite was found to be insensitive to changes in the speed in the higher speed range. The results have been supplemented with scanning electron micrographs to help understand possible friction and wear mechanisms.
Resumo:
Nonlinear finite element analysis is used for the estimation of damage due to low-velocity impact loading of laminated composite circular plates. The impact loading is treated as an equivalent static loading by assuming the impactor to be spherical and the contact to obey Hertzian law. The stresses in the laminate are calculated using a 48 d.o.f. laminated composite sector element. Subsequently, the Tsai-Wu criterion is used to detect the zones of failure and the maximum stress criterion is used to identify the mode of failure. Then the material properties of the laminate are degraded in the failed regions. The stress analysis is performed again using the degraded properties of the plies. The iterative process is repeated until no more failure is detected in the laminate. The problem of a typical T300/N5208 composite [45 degrees/0 degrees/-45 degrees/90 degrees](s) circular plate being impacted by a spherical impactor is solved and the results are compared with experimental and analytical results available in the literature. The method proposed and the computer code developed can handle symmetric, as well as unsymmetric, laminates. It can be easily extended to cover the impact of composite rectangular plates, shell panels and shells.
Resumo:
Hemiorchidectomy (HO) in the adult male bonnet monkey results in a selective increase in circulating concentrations of FSH and testosterone, and this is accompanied by compensatory increase in sperm production by the remaining testis. We investigated the possible role of increased FSH concentration that occurs after HO in the compensatory increase in the activity of the remaining testis. Of eight adult male bonnet monkeys that underwent HO, four received i.v. injections every other day for 30 days of a well-characterized ovine FSH antiserum (a/s) that cross-reacts with monkey FSH. The remaining four males received normal monkey serum (NMS) as control treatment in a protocol similar to that employed for ais-treated males. Blood samples were collected between 2100 and 2200 h before and 1/2, 1, 3, 5, 7, 14, 22, and 29 days after HO. Testicular weight, number of 3 beta-hydroxy steroid dehydrogenase-positive (3 beta-HSD+) cells, and DNA flow cytometric analysis of germ cell populations were obtained for testes collected before and at the termination of NMS or ais treatment. In NMS-treated males, circulating serum FSH concentrations progressively increased to reach a maximal level by Day 7 after HO (1.95 +/- 0.3 vs. 5.6 +/- 0.7 ng/ml on Days -1 and 7, respectively). Within 30 min of ais injection, FSH antibodies were detected in circulation, and the antibody level was maintained at a constant level between Day 7 and end of treatment (exhibiting 50-60% binding to I-125-hFSH). Although circulating mean nocturnal serum testosterone concentration showed an initial decrease, it rose gradually to pre-HO concentrations by Day 7 in NMS-treated males. In contrast, nocturnal mat serum testosterone concentrations in a/s-treated males remained lower than in NMS-treated controls (p < 0.05) up to Day 22 and thereafter only marginally increased. Testicular weights increased (p < 0.05) over the pre-HO weight in NMS- but not in ais-treated males. After HO, the number of 3 beta-HSD+ cells (Leydig cells) was markedly increased but was significantly (p < 0.05) higher in NMS-treated males compared to a/s-treated males. A significant (p < 0.05) reduction in the primary spermatocyte population of germ cells was observed in ais-treated compared to NMS-treated males. These results suggest that the increased FSH occurring after HO could be intimately involved in increasing the compensatory functional activity of the remaining testis in the male bonnet monkey.
Resumo:
Heat-up times derived from studies on the ignition characteristics of a few model composite solid propellants, containing polystyrene, carboxy-terminated polybutadiene, plasticised polyvinyl chloride and polyphenol formaldehyde as binders, show that they are directly proportional to the mass of the sample and inversely proportional to the hear flux. Propellant weight-loss prior to ignition and high pressure ignition temperature data on the propellants, ammonium per chlorate, and binders show that the ignition is governed by the gasification of the binder pyrolysis products. The activation energy for the gasification of the pyrolysed polymer products corresponds to their ignition behaviour suggesting that propellant ignition is controlled by the binder.
Resumo:
The ability of Static Var Compensators (SVCs) to rapidly and continuously control reactive power in response to changing system conditions can result in the improvement of system stability and also increase the power transfer in the transmission system. This paper concerns the application of strategically located SVCs to enhance the transient stability limits and the direct evaluation of the effect of these SVCs on transient stability using a Structure Preserving Energy Function (SPEF). The SVC control system can be modelled from the steady- state control characteristic to accurately simulate its effect on transient stability. Treating the SVC as a voltage-dependent reactive power load leads to the derivation of a path-independent SPEF for the SVC. Case studies on a 10-machine test system using multiple SVCs illustrate the effects of SVCs on transient stability and its accurate prediction.
Resumo:
A 48 d.o.f., four-noded quadrilateral laminated composite shell finite element is particularised to a sector finite element and is used for the large deformation analysis of circular composite laminated plates. The strain-displacement relationships for the sector element are obtained by reducing those of the quadrilateral shell finite element by substituting proper values for the geometric parameters. Subsequently, the linear and tangent stiffness matrices are formulated using conventional methods. The Newton-Raphson method is employed as the nonlinear solution technique. The computer code developed is validated by solving an isotropic case for which results are available in the literature. The method is then applied to solve problems of cylindrically orthotropic circular plates. Some of the results of cylindrically orthotropic case are compared with those available in the literature. Subsequently, application is made to the case of laminated composite circular plates having different lay-up schemes. The computer code can handle symmetric/unsymmetric lay-up schemes. The large displacement analysis is useful in estimating the damage in composite plates caused by low-velocity impact.
Resumo:
Graded alternate layers of Al2O3 and 8% Y2O3-ZrO2 and their admixtures were plasma sprayed onto bond-coated mild steel. They were evaluated for thermal-shock resistance, thermal-barrier characteristics, hot corrosion resistance (molten NaCl corrodant) and depth of attack, adhesion strength and the presence of phases. Although front-back temperature drops of 423-623 K were observed, some of the coatings showed good adherence even after 100 thermal shack cycles. In the sequence of the graded layers, the oxide which is directly in contact with the bond coat appears to influence the properties especially in coatings of 150 and 300 mu m thickness. Molten NaCl readily attacks the films at high hot-face temperatures (1273 K for 1 h) and the adhesive strength falls significantly by 50-60%. Diffusion of alkaline elements is also found to depend on the chemical composition of the outer coating directly facing the molten corrodant. (C) 1997 Elsevier Science Limited.
Resumo:
The effect of uncertainty in composite material properties on the aeroelastic response, vibratory loads, and stability of a hingeless helicopter rotor is investigated. The uncertainty impact on rotating natural frequencies of the blade is studied with Monte Carlo simulations and first-order reliability methods. The stochastic aeroelastic analyses in hover and forward flight are carried out with Monte Carlo simulations. The flap, lag, and torsion responses show considerable scatter from their baseline values, and the uncertainty impact varies with the azimuth angle. Furthermore, the blade response shows finite probability of resonance-type conditions caused by modal frequencies approaching multiples of the rotor speed. The 4/rev vibratory forces show large deviations from their baseline values. The lag mode damping shows considerable scatter due to uncertain material properties with an almost 40% probability of instability in hover.
Resumo:
Constant-stress tensile creep experiments on a superplastic 3-mol%-yttria-stabilized tetragonal zirconia composite with 20 wt% alumina revealed that cavities nucleate relatively early during tensile deformation. The number of cavities nucleated increases with increasing imposed stress. The cavities nucleate at triple points associated largely with an alumina grain, and then grow rapidly in a cracklike manner to attain dimensions on the order of the grain facet size. It is suggested that coarser-grained superplastic ceramics exhibit lower ductility due to the ease in formation of such grain boundary facet-cracks and their interlinkage to form a macroscopic crack of critical dimensions.
Resumo:
We propose, for the first time, a reinforcement learning (RL) algorithm with function approximation for traffic signal control. Our algorithm incorporates state-action features and is easily implementable in high-dimensional settings. Prior work, e. g., the work of Abdulhai et al., on the application of RL to traffic signal control requires full-state representations and cannot be implemented, even in moderate-sized road networks, because the computational complexity exponentially grows in the numbers of lanes and junctions. We tackle this problem of the curse of dimensionality by effectively using feature-based state representations that use a broad characterization of the level of congestion as low, medium, or high. One advantage of our algorithm is that, unlike prior work based on RL, it does not require precise information on queue lengths and elapsed times at each lane but instead works with the aforementioned described features. The number of features that our algorithm requires is linear to the number of signaled lanes, thereby leading to several orders of magnitude reduction in the computational complexity. We perform implementations of our algorithm on various settings and show performance comparisons with other algorithms in the literature, including the works of Abdulhai et al. and Cools et al., as well as the fixed-timing and the longest queue algorithms. For comparison, we also develop an RL algorithm that uses full-state representation and incorporates prioritization of traffic, unlike the work of Abdulhai et al. We observe that our algorithm outperforms all the other algorithms on all the road network settings that we consider.
Resumo:
The sliding-wear behavior of Al2O3-SiC-Al composites prepared by melt oxidation against a steel counterface has been recorded in a pin-on-disk machine. At high speeds and pressures (10 m/s, 20 MPa), friction and wear appear to be principally controlled by the in-situ formation of an interfacial film that consists of a layer of Fe3O4. The formation of this him is examined as a function of sliding speed, lubrication, and composite microstructure. A model is proposed in which high surface temperatures cause the preferential extrusion of aluminum from the composite onto the pin/disk interface. This promotes the adhesive pickup of iron and its oxidation to form a stable tribologically beneficial layer of Fe3O4.
Resumo:
The active site lysine residue, K256, involved in Schiffs base linkage with pyridoxal-5'-phosphate (PEP) in sheep liver recombinant serine hydroxymethyltransferase (rSHMT) was changed to glutamine or arginine by site-directed mutagenesis. The purified K256Q and K256R SHMTs had less than 0.1% of catalytic activity with serine and H(4)folate as substrates compared to rSHMT. The mutant enzymes also failed to exhibit the characteristic visible absorbance spectrum (lambda(max) 425 nm) and did not produce the quinonoid intermediate (lambda(max) 495 nm) upon the addition of glycine and H(4)folate. The mutant enzymes were unable to catalyze aldol cleavage of beta-phenylserine and transamination of D-alanine. These results suggested that the mutation of the lysine had resulted in the inability of the enzyme to bind to the cofactor. Therefore, the K256Q SHMT was isolated as a dimer and the K256R SHMT as a mixture of dimers and tetramers which were converted to dimers slowly. On the other hand, rSHMT was stable as a tetramer for several months, further confirming the role of PLP in maintenance of oligomeric structure. The mutant enzymes also failed to exhibit the increased thermal stability upon the addition of serine, normally observed with rSHMT. The enhanced thermal stability has been attributed to a change in conformation of the enzyme from open to closed form leading to reaction specificity. The mutant enzymes were unable to undergo this conformational change probably because of the absence of bound cofactor.