355 resultados para batch method
Resumo:
In correlation filtering we attempt to remove that component of the aeromagnetic field which is closely related to the topography. The magnetization vector is assumed to be spatially variable, but it can be successively estimated under the additional assumption that the magnetic component due to topography is uncorrelated with the magnetic signal of deeper origin. The correlation filtering was tested against a synthetic example. The filtered field compares very well with the known signal of deeper origin. We have also applied this method to real data from the south Indian shield. It is demonstrated that the performance of the correlation filtering is superior in situations where the direction of magnetization is variable, for example, where the remnant magnetization is dominant.
Resumo:
A novel optical method is proposed and demonstrated, for real-time dimension estimation of thin opaque cylindrical objects. The methodology relies on free-space Fraunhofer diffraction principle. The central region, of such tailored diffraction pattern obtained under suitable choice of illumination conditions, comprises of a pair of `equal intensity maxima', whose separation remains constant and independent of the diameter of the diffracting object. An analysis of `the intensity distribution in this region' reveals the following. At a point symmetrically located between the said maxima, the light intensity varies characteristically with diameter of the diffracting object, exhibiting a relatively stronger intensity modulation under spherical wave illumination than under a plane wave illumination. The analysis reveals further, that the said intensity variation with diameter is controllable by the illumination conditions. Exploiting these `hitherto unexplored' features, the present communication reports for the first time, a reliable method of estimating diameter of thin opaque cylindrical objects in real-time, with nanometer resolution from single point intensity measurement. Based on the proposed methodology, results of few simulation and experimental investigations carried-out on metallic wires with diameters spanning the range of 5 to 50 mu m, are presented. The results show that proposed method is well-suited for high resolution on-line monitoring of ultrathin wire diameters, extensively used in micro-mechanics and semiconductor industries, where the conventional diffraction-based methods fail to produce accurate results.
Resumo:
In this paper we address a scheduling problem for minimising total weighted tardiness. The motivation for the paper comes from the automobile gear manufacturing process. We consider the bottleneck operation of heat treatment stage of gear manufacturing. Real life scenarios like unequal release times, incompatible job families, non-identical job sizes and allowance for job splitting have been considered. A mathematical model taking into account dynamic starting conditions has been developed. Due to the NP-hard nature of the problem, a few heuristic algorithms have been proposed. The performance of the proposed heuristic algorithms is evaluated: (a) in comparison with optimal solution for small size problem instances, and (b) in comparison with `estimated optimal solution' for large size problem instances. Extensive computational analyses reveal that the proposed heuristic algorithms are capable of consistently obtaining near-optimal solutions (that is, statistically estimated one) in very reasonable computational time.
Resumo:
A new method based on analysis of a single diffraction pattern is proposed to measure deflections in micro-cantilever (MC) based sensor probes, achieving typical deflection resolutions of 1nm and surface stress changes of 50 mu N/m. The proposed method employs a double MC structure where the deflection of one of the micro-cantilevers relative to the other due to surface stress changes results in a linear shift of intensity maxima of the Fraunhofer diffraction pattern of the transilluminated MC. Measurement of such shifts in the intensity maxima of a particular order along the length of the structure can be done to an accuracy of 0.01mm leading to the proposed sensitivity of deflection measurement in a typical microcantilever. This method can overcome the fundamental measurement sensitivity limit set by diffraction and pointing stability of laser beam in the widely used Optical Beam Deflection method (OBDM).
Resumo:
We address the problem of computing the level-crossings of an analog signal from samples measured on a uniform grid. Such a problem is important, for example, in multilevel analog-to-digital (A/D) converters. The first operation in such sampling modalities is a comparator, which gives rise to a bilevel waveform. Since bilevel signals are not bandlimited, measuring the level-crossing times exactly becomes impractical within the conventional framework of Shannon sampling. In this paper, we propose a novel sub-Nyquist sampling technique for making measurements on a uniform grid and thereby for exactly computing the level-crossing times from those samples. The computational complexity of the technique is low and comprises simple arithmetic operations. We also present a finite-rate-of-innovation sampling perspective of the proposed approach and also show how exponential splines fit in naturally into the proposed sampling framework. We also discuss some concrete practical applications of the sampling technique.
Resumo:
The eigenvalue and eigenstructure assignment procedure has found application in a wide variety of control problems. In this paper a method for assigning eigenstructure to a linear time invariant multi-input system is proposed. The algorithm determines a matrix that has eigenvalues and eigenvectors at the desired locations. It is obtained from the knowledge of the open-loop system and the desired eigenstructure. Solution of the matrix equation, involving unknown controller gams, open-loop system matrices, and desired eigenvalues and eigenvectors, results hi the state feedback controller. The proposed algorithm requires the closed-loop eigenvalues to be different from those of the open-loop case. This apparent constraint can easily be overcome by a negligible shift in the values. Application of the procedure is illustrated through the offset control of a satellite supported, from an orbiting platform, by a flexible tether.
Resumo:
The eigenvalue assignment/pole placement procedure has found application in a wide variety of control problems. The associated literature is rather extensive with a number of techniques discussed to that end. In this paper a method for assigning eigenvalues to a Linear Time Invariant (LTI) single input system is proposed. The algorithm determines a matrix, which has eigenvalues at the desired locations. It is obtained from the knowledge of the open-loop system and the desired eigenvalues. Solution of the matrix equation, involving unknown controller gains, open-loop system matrices and desired eigenvalues, results in the state feedback controller. The proposed algorithm requires the closed-loop eigenvalues to be different from those of the open-loop case. This apparent constraint is easily overcome by a negligible shift in the values. Two examples are considered to verify the proposed algorithm. The first one pertains to the in-plane libration of a Tethered Satellite System (TSS) while the second is concerned with control of the short period dynamics of a flexible airplane. Finally, the method is extended to determine the Controllability Grammian, corresponding to the specified closed-loop eigenvalues, without computing the controller gains.
Resumo:
Ultrasonication of aqueous KI solution is known to yield I2 due to reaction of iodide ions with hydroxyl radicals, which in turn are generated due to cavitation. Based on this conceptual framework, a model has been developed to predict the rate of iodine formation for KI solutions of various concentrations under different gas atmospheres. The model follows the growth and collapse of a gas—vapour cavity using the Rayleigh—Plesset bubble dynamics equation. The bubble is assumed to behave isothermally during its growth phase and a part of the collapse phase. Thereafter it is assumed to collapse adiabatically, yielding high temperatures and pressures. Thermodynamic equilibrium is assumed in the bubble at the end of collapse phase. The contents of the bubble are assumed to mix with the liquid, and the reactor contents are assumed to be well stirred. The model has been verified by conducting experiments with KI solutions of different concentrations and using different gas atmospheres. The model not only explains these results but also the existence of a maximum when Ar---O2 mixtures of different compositions are employed.
Resumo:
Parkin (1978) suggested the velocity method based on the observation that the theoretical rate of consolidation and time factor plot on a log-log scale yields an initial slope of 1:2 up to 50% consolidation. A new method is proposed that is an improvement over Parkin's velocity method because it minimizes the problems encountered in using that method. The results obtained agree with the other methods in use.
Resumo:
The eigenvalue and eigenstructure assignment procedure has found application in a wide variety of control problems. In this paper a method for assigning eigenstructure to a Linear time invariant multi-input system is proposed. The algorithm determines a matrix that has eigenvalues and eigenvectors at the desired locations. It is obtained from the knowledge of the open-loop system and the desired eigenstructure. solution of the matrix equation, involving unknown controller gains, open-loop system matrices, and desired eigenvalues and eigenvectors, results in the state feedback controller. The proposed algorithm requires the closed-loop eigenvalues to be different from those of the open-loop case. This apparent constraint can easily be overcome by a negligible shift in the values. Application of the procedure is illustrated through the offset control of a satellite supported, from an orbiting platform, by a flexible tether,
Resumo:
The eigenvalue assignment/pole placement procedure has found application in a wide variety of control problems. The associated literature is rather extensive with a number of techniques discussed to that end. In this paper a method for assigning eigenvalues to a Linear Time Invariant (LTI) single input system is proposed. The algorithm determines a matrix, which has eigenvalues at the desired locations. It is obtained from the knowledge of the open-loop system and the desired eigenvalues. Solution of the matrix equation, involving unknown controller gains, open-loop system matrices and desired eigenvalues, results in the state feedback controller. The proposed algorithm requires the closed-loop eigenvalues to be different from those of the open-loop case. This apparent constraint is easily overcome by a negligible shift in the values. Two examples are considered to verify the proposed algorithm. The first one pertains to the in-plane libration of a Tethered Satellite System (TSS) while the second is concerned with control of the short period dynamics of a flexible airplane. Finally, the method is extended to determine the Controllability Grammian, corresponding to the specified closed-loop eigenvalues, without computing the controller gains.
Resumo:
Ultrasonication of aqueous KI solution is known to yield I2 due to reaction of iodide ions with hydroxyl radicals, which in turn are generated due to cavitation. Based on this conceptual framework, a model has been developed to predict the rate of iodine formation for KI solutions of various concentrations under different gas atmospheres. The model follows the growth and collapse of a gas-vapour cavity using the Rayleigh-Plesset bubble dynamics equation. The bubble is assumed to behave isothermally during its growth phase and a part of the collapse phase. Thereafter it is assumed to collapse adiabatically, yielding high temperatures and pressures. Thermodynamic equilibrium is assumed in the bubble at the end of collapse phase. The contents of the bubble are assumed to mix with the liquid, and the reactor contents are assumed to be well stirred. The model has been verified by conducting experiments with KI solutions of different concentrations and using different gas atmospheres. The model not only explains these results but also the existence of a maximum when Ar-O2 mixtures of different compositions are employed.
Resumo:
The direct intratesticular injection of [P-32]phosphate resulted in 4-9 times more labelling of rat testis proteins compared to the conventional method of in vitro incubation. Moreover this is a simple technique requiring minimum (7-10 times less) radioactive phosphate and is less hazardous.
Resumo:
Many physical problems can be modeled by scalar, first-order, nonlinear, hyperbolic, partial differential equations (PDEs). The solutions to these PDEs often contain shock and rarefaction waves, where the solution becomes discontinuous or has a discontinuous derivative. One can encounter difficulties using traditional finite difference methods to solve these equations. In this paper, we introduce a numerical method for solving first-order scalar wave equations. The method involves solving ordinary differential equations (ODEs) to advance the solution along the characteristics and to propagate the characteristics in time. Shocks are created when characteristics cross, and the shocks are then propagated by applying analytical jump conditions. New characteristics are inserted in spreading rarefaction fans. New characteristics are also inserted when values on adjacent characteristics lie on opposite sides of an inflection point of a nonconvex flux function, Solutions along characteristics are propagated using a standard fourth-order Runge-Kutta ODE solver. Shocks waves are kept perfectly sharp. In addition, shock locations and velocities are determined without analyzing smeared profiles or taking numerical derivatives. In order to test the numerical method, we study analytically a particular class of nonlinear hyperbolic PDEs, deriving closed form solutions for certain special initial data. We also find bounded, smooth, self-similar solutions using group theoretic methods. The numerical method is validated against these analytical results. In addition, we compare the errors in our method with those using the Lax-Wendroff method for both convex and nonconvex flux functions. Finally, we apply the method to solve a PDE with a convex flux function describing the development of a thin liquid film on a horizontally rotating disk and a PDE with a nonconvex flux function, arising in a problem concerning flow in an underground reservoir.
Resumo:
Plasma-sprayable powders of calcia, magnesia and yttria-stabilized zirconia have been prepared by using polyvinyl alcohol binders. The powders have been characterized for sprayability by spray coating on steer plates previously coated with an NiAl bond coat. The suitability of these coatings for thermal barrier applications have been examined. Thermal barrier and related properties, along with phase stability and mechanical properties, have been found to be good. Failure of the thermal barrier coating has been observed to occur at the interface between the bond coat and the substrate, due to the formation of a pile-up layer consisting of Fe-Zr-Al-O compound.