449 resultados para approximate
Resumo:
We use the BBGKY hierarchy equations to calculate, perturbatively, the lowest order nonlinear correction to the two-point correlation and the pair velocity for Gaussian initial conditions in a critical density matter-dominated cosmological model. We compare our results with the results obtained using the hydrodynamic equations that neglect pressure and find that the two match, indicating that there are no effects of multistreaming at this order of perturbation. We analytically study the effect of small scales on the large scales by calculating the nonlinear correction for a Dirac delta function initial two-point correlation. We find that the induced two-point correlation has a x(-6) behavior at large separations. We have considered a class of initial conditions where the initial power spectrum at small k has the form k(n) with 0 < n less than or equal to 3 and have numerically calculated the nonlinear correction to the two-point correlation, its average over a sphere and the pair velocity over a large dynamical range. We find that at small separations the effect of the nonlinear term is to enhance the clustering, whereas at intermediate scales it can act to either increase or decrease the clustering. At large scales we find a simple formula that gives a very good fit for the nonlinear correction in terms of the initial function. This formula explicitly exhibits the influence of small scales on large scales and because of this coupling the perturbative treatment breaks down at large scales much before one would expect it to if the nonlinearity were local in real space. We physically interpret this formula in terms of a simple diffusion process. We have also investigated the case n = 0, and we find that it differs from the other cases in certain respects. We investigate a recently proposed scaling property of gravitational clustering, and we find that the lowest order nonlinear terms cause deviations from the scaling relations that are strictly valid in the linear regime. The approximate validity of these relations in the nonlinear regime in l(T)-body simulations cannot be understood at this order of evolution.
Resumo:
Fork-join queueing systems offer a natural modelling paradigm for parallel processing systems and for assembly operations in automated manufacturing. The analysis of fork-join queueing systems has been an important subject of research in recent years. Existing analysis methodologies-both exact and approximate-assume that the servers are failure-free. In this study, we consider fork-join queueing systems in the presence of server failures and compute the cumulative distribution of performability with respect to the response time of such systems. For this, we employ a computational methodology that uses a recent technique based on randomization. We compare the performability of three different fork-join queueing models proposed in the literature: the distributed model, the centralized splitting model, and the split-merge model. The numerical results show that the centralized splitting model offers the highest levels of performability, followed by the distributed splitting and split-merge models.
Resumo:
In this paper, we look at the problem of scheduling expression trees with reusable registers on delayed load architectures. Reusable registers come into the picture when the compiler has a data-flow analyzer which is able to estimate the extent of use of the registers. Earlier work considered the same problem without allowing for register variables. Subsequently, Venugopal considered non-reusable registers in the tree. We further extend these efforts to consider a much more general form of the tree. We describe an approximate algorithm for the problem. We formally prove that the code schedule produced by this algorithm will, in the worst case, generate one interlock and use just one more register than that used by the optimal schedule. Spilling is minimized. The approximate algorithm is simple and has linear complexity.
Resumo:
Two free-ranging packs of dholes (Asiatic wild dog, Cuon alpinus) were monitored for a period of 6 yr (Sep. 1990-Sep. 1996) in the Mudumalai sanctuary, southern India. Demographic data on age structure, litter-size, sex ratio and age and sex specific dispersal were collected. Behavioural data on social interactions and reproductive behaviour among pack members were obtained to determine the frequencies of dominant and subordinate behaviours shown by malt: and female pack members and a measure of each male's reproductive access to females. Behaviours displayed by pack members at dens were recorded to determine whether any age- or sex-specific role specialization existed during pup care. Tenures for dominant males and females within the pack were calculated to ascertain the rate of breeding vacancies occurring within packs. Approximate levels of genetic relatedness within packs were determined by studying pedigrees. In most years one study pack had a male-biased adult sex ratio. This was caused by almost twofold higher dispersal of adult females over adult males. A considerable variance existed in the percentage of sub-adults dispersing from the two packs. Differences existed in the frequencies of dominant and subordinate behaviours shown by males. For males, dominance ranks and ranks based on submissive behaviours were not correlated with frequencies of reproductive behaviours. Subordinate males also displayed reproductive behaviours. In packs, dominant males had lower tenures than dominant females indicating that among males breeding vacancies arose more quickly. The litter size was found to be negatively correlated with the age of the breeding female. There were no significant differences across individuals of varying age or sex classes in the display of pup care behaviours. Significant differences did exist among individual adults. Genetic relatedness among packs tended to vary temporally as a consequence of possible mating by subordinate animals and immigration of new males into the pack. In conclusion, it appears that males delay dispersal and cooperate within their natal packs because of the variety of reproductive strategies they could pursue within. A combination of ecological constraints and the difficulties of achieving breeding status within non-natal packs may make early dispersal and independent breeding less beneficial.
Resumo:
1. Recovery of rainforest bird community structure and composition, in relation to forest succession after slash-and-burn shifting cultivation or jhum was studied in Mizoram, north-east India. Replicate fallow sites abandoned after shifting cultivation 1, 5, 10, 25 and approximate to 100 years ago, were compared with primary evergreen and semi-evergreen forest using transect and quadrat sampling. 2. Vegetation variables such as woody plant species richness, tree density and vertical stratification increased with fallow age in a rapid. nun-linear, asymptotic manner. Principal components analysis of vegetation variables summarized 92.8% of the variation into two axes: PC1 reflecting forest development and woody plant succession (variables such as tree density, woody plant species richness), and PC2 depicting bamboo density, which increased from 1 to 25 years and declined thereafter. 3. Bird species richness, abundance and diversity, increased rapidly and asymptotically during succession paralleling vegetation recovery as shown by positive correlations with fallow age and PC1 scores of sites. Bamboo density reflected by PC2 had a negative effect on bird species richness and abundance. 4. The bird community similarity (Morisita index) of sites with primary forest also increased asymptotically with fallow age indicating sequential species turnover during succession. Bird community similarity of sites with primary forest (or between sites) was positively correlated with both physiognomic and floristic similarities with primary forest (or between sites). 5. The number of bird species in guilds associated with forest development and woody plants (canopy insectivores, frugivores: bark feeders) was correlated with PCI scores of the sites. Species in other guilds (e. g. granivores, understorey insectivores) appeared to dominate during early and mid-succession. 6. The non-linear relationships imply that fallow periods less than a threshold of 25 years for birds, and about 50-75 years for woody plants, are likely to cause substantial community alteration. 7. As 5-10-year rotation periods or jhum cycles prevail in many parts of north-east India. there is a need to protect and conserve tracts of late-successional and primary forest.
Resumo:
The nonequilibrium dynamic phase transition, in the kinetic Ising model in the presence of an oscillating magnetic field has been studied both by Monte Carlo simulation and by solving numerically the mean-field dynamic equation of motion for the average magnetization. In both cases, the Debye ''relaxation'' behavior of the dynamic order parameter has been observed and the ''relaxation time'' is found to diverge near the dynamic transition point. The Debye relaxation of the dynamic order parameter and the power law divergence of the relaxation time have been obtained from a very approximate solution of the mean-field dynamic equation. The temperature variation of appropriately defined ''specific heat'' is studied by the Monte Carlo simulation near the transition point. The specific heat has been observed to diverge near the dynamic transition point.
Resumo:
We point out how fluctuation of the phase of the superconducting order parameter can play a key role in our understanding of high Te superconductors. A simple universal criterion is given which illustrates why all oxide superconductors in contrast to classical superconductors ought to behave as a lattice of cooper pairs. T-c is to be thought of as the temperature of phase coherence or the temperature above which the lattice of Cooperpair 'melts' into a phase of Cooper-pair droplets that starts forming at T approximate to T-* . This is the pseudo-gap region. Quantum fluctuation of the phase predicts a superconductor to insulator phase transition for all underdoped materials.
Resumo:
Sufficiently long molecular dynamics simulations have been carried out on spherical monatomic sorbates in NaY zeolite, interacting via simple Lennard-Jones potentials, to investigate the dependence of the levitation effect on the temperature. Simulations carried out in the range 100-300 K suggest that the anomalous peak in the diffusion coefficient (observed when the levitation parameter, gamma, is near unity) decreases in intensity with increase in temperature. The rate of cage-to-cage migrations also exhibits a similar trend. The activation energy obtained from Arrhenius plots is found to exhibit a minimum when the diffusion coefficient is a maximum, corresponding to the gamma approximate to 1 sorbate diameter. In the linear or normal regime, the activation energy increases with increase in sorbate diameter until it shows a sharp decrease in the anomalous regime. Locations and energies of the adsorption sites and their dependence on the sorbate size gives interesting insight into the nature of the underlying potential-energy surface and further explain the observed trend in the activation energy with sorbate size. Cage residence times, tau(c), show little or no change with temperature for the sorbate with diameter corresponding to gamma approximate to 1, whereas there is a significant decrease in tau(c) with increase in temperature for sorbates in the linear regime. The implications of the present study for the separation of mixtures of sorbates are discussed.
Resumo:
The velocity distribution function for the steady shear flow of disks (in two dimensions) and spheres (in three dimensions) in a channel is determined in the limit where the frequency of particle-wall collisions is large compared to particle-particle collisions. An asymptotic analysis is used in the small parameter epsilon, which is naL in two dimensions and na(2)L in three dimensions, where; n is the number density of particles (per unit area in two dimensions and per unit volume in three dimensions), L is the separation of the walls of the channel and a is the particle diameter. The particle-wall collisions are inelastic, and are described by simple relations which involve coefficients of restitution e(t) and e(n) in the tangential and normal directions, and both elastic and inelastic binary collisions between particles are considered. In the absence of binary collisions between particles, it is found that the particle velocities converge to two constant values (u(x), u(y)) = (+/-V, O) after repeated collisions with the wall, where u(x) and u(y) are the velocities tangential and normal to the wall, V = (1 - e(t))V-w/(1 + e(t)), and V-w and -V-w, are the tangential velocities of the walls of the channel. The effect of binary collisions is included using a self-consistent calculation, and the distribution function is determined using the condition that the net collisional flux of particles at any point in velocity space is zero at steady state. Certain approximations are made regarding the velocities of particles undergoing binary collisions :in order to obtain analytical results for the distribution function, and these approximations are justified analytically by showing that the error incurred decreases proportional to epsilon(1/2) in the limit epsilon --> 0. A numerical calculation of the mean square of the difference between the exact flux and the approximate flux confirms that the error decreases proportional to epsilon(1/2) in the limit epsilon --> 0. The moments of the velocity distribution function are evaluated, and it is found that [u(x)(2)] --> V-2, [u(y)(2)] similar to V-2 epsilon and -[u(x)u(y)] similar to V-2 epsilon log(epsilon(-1)) in the limit epsilon --> 0. It is found that the distribution function and the scaling laws for the velocity moments are similar for both two- and three-dimensional systems.
Resumo:
We report a study of the magnetoresistance (MR) of the metallic perovskite oxide LaNiO3-delta as a function of the oxygen stoichiometry delta (delta less than or equal to 0.14), magnetic field (H less than or equal to 6 T) and temperature (1.5 K less than or equal to T less than or equal to 25 K). We find a strong dependence of the nature of the MR on the oxygen stoichiometry. The MR at low temperatures changes from positive to negative as the sample becomes more oxygen deficient (i.e. delta increases). Some of the samples, which are more resistive, show resistivity minima at T-min approximate to 20 K. We find that in these samples the MR is positive for T > T-min and negative for T < T-min. We conclude that in the absence of strong magnetic interaction, the negative MR in these oxides can arise from weak-localization effects.
Resumo:
Lithium-ion conduction in mixed-metal phosphates, (LiMMIII)-M-V(PO,), [M-V = Nb, Ta; M-III = Al, Cr, Fe], possessing the rhombohedral (R (3) over bar c) NASICON structure has been investigated. Among the phosphates investigated, LiTaAl(PO4)(3) exhibits the highest conductivity, sigma approximate to 1.0 x 10(-2) S cm(-1) at 350 degrees C (E-a = 0.47 eV), comparable to the conductivity of LiTi2(PO4)(3). Unlike LiTi2(PO4)(3) which contains lithium-reducible Ti-IV, LiTaAl(PO4)(3) contains stable Ta-V and Al-III oxidation states and hence deserves further attention towards tailoring new lithium-ion conductors for application as electrolytes in solid state lithium batteries.
Resumo:
N,N'-Bis(ferrocenylmethylidene)-p-phenylenediamine 1 and N-(ferrocenylmethylidene) aniline 2 are readily synthesized by Schiff base condensation of appropriate units. Iodine (I-2), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), tetrachloro-1,4-benzoquinone (CA), tetracyanoethylene (TCNE) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) form charge transfer complexes with 1 and 2. IR spectroscopy suggests an increase in the amount of charge transferred from the ferrocenyl ring to the oxidant in the order, I-2 < CA < TCNQ < TCNE approximate to DDQ. EPR spectra of the oxidized binuclear complexes are indicative of localized species containing iron- and carbon-centered radicals. The Mossbauer spectrum of the iodine oxidized complex of 1 reveals the presence of both Fe(III) and Fe(II) centers. Variable temperature magnetic and Mossbauer studies show that the ratio of Fe(III)/Fe(II) centers varies as a function of temperature. The larger Fe(II)/Fe(III) ratio at lower temperatures is best explained by a retro charge transfer from the iodide to the iron(III) metal center. There is negligible solvent effect on the formation of the iodine oxidized charge transfer complex of 1. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
The natural frequencies of continuous systems depend on the governing partial differential equation and can be numerically estimated using the finite element method. The accuracy and convergence of the finite element method depends on the choice of basis functions. A basis function will generally perform better if it is closely linked to the problem physics. The stiffness matrix is the same for either static or dynamic loading, hence the basis function can be chosen such that it satisfies the static part of the governing differential equation. However, in the case of a rotating beam, an exact closed form solution for the static part of the governing differential equation is not known. In this paper, we try to find an approximate solution for the static part of the governing differential equation for an uniform rotating beam. The error resulting from the approximation is minimized to generate relations between the constants assumed in the solution. This new function is used as a basis function which gives rise to shape functions which depend on position of the element in the beam, material, geometric properties and rotational speed of the beam. The results of finite element analysis with the new basis functions are verified with published literature for uniform and tapered rotating beams under different boundary conditions. Numerical results clearly show the advantage of the current approach at high rotation speeds with a reduction of 10 to 33% in the degrees of freedom required for convergence of the first five modes to four decimal places for an uniform rotating cantilever beam.
Resumo:
Two methods based on wavelet/wavelet packet expansion to denoise and compress optical tomography data containing scattered noise are presented, In the first, the wavelet expansion coefficients of noisy data are shrunk using a soft threshold. In the second, the data are expanded into a wavelet packet tree upon which a best basis search is done. The resulting coefficients are truncated on the basis of energy content. It can be seen that the first method results in efficient denoising of experimental data when scattering particle density in the medium surrounding the object was up to 12.0 x 10(6) per cm(3). This method achieves a compression ratio of approximate to 8:1. The wavelet packet based method resulted in a compression of up to 11:1 and also exhibited reasonable noise reduction capability. Tomographic reconstructions obtained from denoised data are presented. (C) 1999 Published by Elsevier Science B.V. All rights reserved,
Resumo:
In uplink orthogonal frequency division multiple access (OFDMA), carrier frequency offsets (CFO) and/or timing offsets (TO) of other users with respect to a desired user can cause significant multiuser interference (MUI). In this paper, we derive an analytical bit error rate (BER) expression that quantify the degradation in BER due to the combined effect of both CFOs and TOs in uplink OFDMA on Rician fading channels. Such an analytical BER derivation for uplink OFDMA with CFOs and TOs on Rician fading channels has not been reported so far. For the case of non-zero CFOs/TOs, we obtain an approximate BER expression involving a single integral. Analytical and simulation BER results are shown to match very well.