353 resultados para Structural sustainability
Resumo:
Sparingly soluble neodymium copper oxalate (NCO) single crystals were grown by gel method, by the diffusion of a mixture of neodymium nitrate and cupric nitrate into the set gel containing oxalic acid. Tabular crystal, revealing well-defined dissolution figures has been recorded. X-ray diffraction studies of the powdered sample reveal that NCO is crystalline. Infrared absorption spectrum confirmed the formation of oxalato complex with water of crystallization, while energy dispersive X-ray analysis established the presence of neodymium dominant over copper in the sample. X-ray photoelectron spectroscopic studies established the presence of Nd and Cu in oxide states besides (C2O4)(2-) oxalate group. The intensities of Nd (3d(5/2)) and Cu (2p(3/2)) peaks measured in terms of maximum photoelectron count rates also revealed the presence of Nd in predominance. The inductively coupled plasma analysis supports the EDAX and XPS data by the estimation of neodymium percentage by weight to that of copper present in the NCO sample. On the basis of these findings, an empirical structure for NCO has been proposed. The implications are discussed.
Resumo:
The structural proteins of mycobacteriophage I3 have been analysed by sodium dodecyl sulfate-polyacrylamide-gel electrophoresis (SDS-PAGE), radioiodination and immunoblotting. Based on their abundance the 34- and 70-kDa bands appeared to represent the major structural proteins. Successful cloning and expression of the 70-kDa protein-encoding gene of phage I3 in Escherichia coli and its complete nucleotide sequence determination have been accomplished, A second (partial) open reading frame following the stop codon for the 70-kDa protein was also identified within the cloned fragment. The deduced amino-acid sequence of the 70-kDa protein and the codon usage patterns indicated the preponderance of codons, as predicted from the high G+C content of the genomic DNA of phage I3.
Resumo:
Plant seeds usually have high concentrations of proteinase and amylase inhibitors. These inhibitors exhibit a wide range of specificity, stability and oligomeric structure. In this communication, we report analysis of sequences that show statistically significant similarity to the double-headed alpha-amylase/trypsin inhibitor of ragi (Eleusine coracana). Our aim is to understand their evolutionary and structural features. The 14 sequences of this family that are available in the SWISSPROT database form three evolutionarily distinct branches. The branches relate to enzyme specificities and also probably to the oligomeric state of the proteins and not to the botanical class of the plant from which the enzymes are derived. This suggests that the enzyme specificities of the inhibitors evolved before the divergence of commercially cultivated cereals. The inhibitor sequences have three regions that display periodicity in hydrophobicity. It is likely that this feature reflects extended secondary structure in these segments. One of the most variable regions of the polypeptide corresponds to a loop, which is most probably exposed in the native structure of the inhibitors and is responsible for the inhibitory property.
Resumo:
Two fragments of pancreatic ribonuclease A, a truncated version of S-peptide (residues 1-15) and S-protein (residues 21-124), combine to give a catalytically active complex. We have substituted the wild-type residue at position 13, methionine (Met), with norleucine (Nle), where the only covalent change is the replacement of the sulfur atom with a methylene group. The thermodynamic parameters associated with the binding of this variant to S-protein, determined by titration calorimetry in the temperature range 10-40 degrees C, are reported and compared to values previously reported [Varadarajan, R., Connelly, P. R., Sturtevant, J. M., & Richards, F. M. (1992) Biochemistry 31, 1421-1426] for other position 13 analogs. The differences in the free energy and enthalpy of binding between the Met and Nle peptides are 0.6 and 7.9 kcal/mol at 25 degrees C, respectively. These differences are slightly larger than, but comparable to, the differences in the values for the Met/Ile and Met/Leu pairs. The structure of the mutant complex was determined to 1.85 Angstrom resolution and refined to an R-factor of 17.4% The structures of mutant and wild-type complexes are practically identical although the Nle side chain has a significantly higher average B-factor than the corresponding Met side chain. In contrast, the B-factors of the atoms of the cage of residues surrounding position 13 are all somewhat lower in the Nle variant than in the Met wild-type. Thus, the large differences in the binding enthalpy appear to reside entirely in the difference in chemical properties or dynamic behavior of the -S- and -CH2- groups and not in differences in the geometry of the side chains or the internal cavity surface. In addition, a novel method of obtaining protein stability data by means of isothermal titration calorimetry is introduced.
Resumo:
The as-deposited and annealed radio frequency reactive magnetron sputtered tantalum oxide (Ta2O5) films were characterized by studying the chemical binding configuration, structural and electrical properties. X-ray photoelectron spectroscopy and X-ray diffraction analysis of the films elucidate that the film annealed at 673 K was stoichiometric with orthorhombic beta-phase Ta2O5. The dielectric constant values of the tantalum oxide capacitors with the sandwich structure of Al/Ta2O5/Si were in the range from 14 to 26 depending on the post-deposition annealing temperature. The leakage current density was < 20 nA cm(-2) at the gate bias voltage of 0.04 MV/cm for the annealed films. The electrical conduction mechanism observed in the films was Poole-Frenkel. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This article describes a facile, low-cost, solution-phase approach to the large-scale preparation of Hg1-xCdxTe nanostructures of different shapes such as nanorods, quantum dots, hexagonal cubes of different sizes and different compositions at a growth temperature of 180 degrees C using an air stable Te source by solvothermal technique. The XRD spectrum shows that the crystals are cubic in their basic structure and reveals the variation in lattice constant as a function of composition. The size and morphology of the products were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The formation of irregular shaped particles and few nano-rods in the present synthesis is attributed to the cetyl trimethylammonium bromide (CTAB). The room temperature FTIR absorption and PL studies for a compositon of x = 0.8 gives a band gap of 1.1 eV and a broad emission in NIR region (0.5-0.9 eV) with all bands attributed to surface defects.
Resumo:
Amorphous carbon films are prepared by the pyrolysis of Tetra Chloro Phthalic Anhydride (TCPA) at different temperatures (700 degrees C to 900 degrees C). DC Conductivity measurements are done on the films in the temperature range 300K to 4.2K. It shows an activated temperature dependence with a small activation energy (0.02eV to 0.003eV). Variable range hopping is observed at low temperatures. The films are characterised by XRD, SEM, TEM, AFM and microRaman. The electronic structure of the film is used to explain the electrical behaviour.
Resumo:
A powder neutron diffraction study was carried out on 0.8BiFeO(3)-0.2PbTiO(3) in the temperature range 27-1000 degrees C. The system exhibits magnetic transition at similar to 300 degrees C and a rhombohedral (R3c)-cubic (Pm3m) ferroelectric phase transition at similar to 650 degrees C. Anomalous variation in the lattice parameters and the octahedral tilt angle is observed across the magnetic transition temperature. In the magnetic phase, the c parameter is contracted and the octahedral tilt angle is slightly increased. The results suggest coupling between the spin, lattice and structural degrees of freedom. (C) 2011 American Institute of Physics. doi:10.1063/1.3555093]
Resumo:
We have carried out Brownian dynamics simulations of binary mixtures of charged colloidal suspensions of two different diameter particles with varying volume fractions phi and charged impurity concentrations n(i). For a given phi, the effective temperature is lowered in many steps by reducing n(i) to see how structure and dynamics evolve. The structural quantities studied are the partial and total pair distribution functions g(tau), the static structure factors, the time average g(<(tau)over bar>), and the Wendt-Abraham parameter. The dynamic quantity is the temporal evolution of the total meansquared displacement (MSD). All these parameters show that by lowering the effective temperature at phi = 0.2, liquid freezes into a body-centered-cubic crystal whereas at phi = 0.3, a glassy state is formed. The MSD at intermediate times shows significant subdiffusive behavior whose time span increases with a reduction in the effective temperature. The mean-squared displacements for the supercooled liquid with phi = 0.3 show staircase behavior indicating a strongly cooperative jump motion of the particles.
Resumo:
Cu (0.1 mol%) doped ZnO nanopowders have been successfully synthesized by a wet chemical method at a relatively low temperature (300 degrees C). Powder X-ray diffraction (PXRD) analysis, scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, UV-Visible spectroscopy, Photoluminescence (PL) and Electron Paramagnetic Resonance (EPR) measurements were used for characterization. PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure of ZnO without any secondary phase. The particle size of as-formed product has been calculated by Williamson-Hall (W-H) plots and Scherrer's formula is found to be in the range of similar to 40 nm. TEM image confirms the nano size crystalline nature of Cu doped ZnO. SEM micrographs of undoped and Cu doped ZnO show highly porous with large voids. UV-Vis spectrum showed a red shift in the absorption edge in Cu doped ZnO. PL spectra show prominent peaks corresponding to near band edge UV emission and defect related green emission in the visible region at room temperature and their possible mechanisms have been discussed. The EPR spectrum exhibits a broad resonance signal at g similar to 2.049, and two narrow resonances one at g similar to 1.990 and other at g similar to 1.950. The broad resonance signal at g similar to 2.049 is a characteristic of Cu2+ ion whereas the signal at g similar to 1.990 and g similar to 1.950 can be attributed to ionized oxygen vacancies and shallow donors respectively. The spin concentration (N) and paramagnetic susceptibility (X) have been evaluated and discussed. (C) 2011 Elsevier B. V. All rights reserved.
Monte Carlo simulation of network formation based on structural fragments in epoxy-anhydride systems
Resumo:
A method combining the Monte Carlo technique and the simple fragment approach has been developed for simulating network formation in amine-catalysed epoxy-anhydride systems. The method affords a detailed insight into the nature and composition of the network, showing the distribution of various fragments. It has been used to characterize the network formation in the reaction of the diglycidyl ester of isophthalic acid with hexahydrophthalic anhydride, catalysed by benzyldimethylamine. Pre-gel properties like number and weight distributions and average molecular weights have been calculated as a function of epoxy conversion, leading to a prediction of the gel-point conversion. Analysis of the simulated network further yields other characteristic properties such as concentration of crosslink points, distribution and concentration of elastically active chains, average molecular weight between crosslinks, sol content and mass fraction of pendent chains. A comparison has been made of the properties obtained through simulation with those predicted by the fragment approach alone, which, however, gives only average properties. The Monte Carlo simulation results clearly show that loops and other cyclic structures occur in the gel. This may account for the differences observed between the results of the simulation and the fragment model in the post-gel phase. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
High pressure Raman scattering studies have been carried out on cesium periodate (CsIO4) using the diamond anvil cell. Three pressure-induced phase transitions occur in the range 0.1�12 GPa as indicated by abrupt changes in the Raman spectra, and pressure dependence of the phonon frequencies. The transitions are observed at 1.5, 4.5 and 6.2 GPa in the increasing pressure cycle. A large hysteresis is noticed for the reverse transition when releasing the pressure. The high pressure phase is nearly quenchable to ambient pressure. The nature of the pressure-induced transitions are discussed in terms of the sequence of pressure-induced transitions expected for scheelite-pseudoscheelite structure ABO4 compounds from crystal chemical considerations. For the softening of the two high frequency internal modes, a pressure-induced electronic change involving the 5 d states of cesium and 5 p states of iodine is invoked.
Resumo:
Bi2NbxV1-xO5.5 ceramics with x ranging from 0.01 to 0.5 have been prepared. The crystal system transforms from an orthorhombic to tetragonal at x greater than or equal to 0.1 and it persists until x = 0.5. Scanning electron microscopic (SEM) investigations carried out on thermally etched Bi2NbxV1-xO5.5 ceramics confirm that the grain size decreases markedly (18 mu m to 4 mu m) with increasing x. The shift in the Curie temperature (725 K) toward lower temperatures, with increasing x, is established by Differential Scanning Calorimetry (DSC). The dielectric constants as well as the loss tangent (tan delta) decrease with increasing x at room temperature.