257 resultados para Self-Avoiding Walks
Resumo:
The performance of molecular materials in optoelectronic devices critically depends upon their electronic properties and solid-state structure. In this report, we have synthesized sulfur and selenium based (T4BT and T4BSe) donor-acceptor-donor (D-A-D) organic derivatives in order to understand the structure-property correlation in organic semiconductors by selectively tuning the chalcogen atom. The photophysical properties exhibit a significant alteration upon varying a single atom in the molecular structure. A joint theoretical and experimental investigation suggests that replacing sulfur with selenium significantly reduces the band gap and molar absorption coefficient because of lower electronegativity and ionization potential of selenium. Single-crystal X-ray diffraction analysis showed differences in their solid-state packing and intermolecular interactions. Subsequently, difference in the solid-state packing results variation in self-assembly. Micorstructural changes within these materials are correlated to their electrical resistance variation, investigated by conducting probe atomic force microscopy (CP-AFM) measurements. These results provide useful guidelines to understand the fundamental properties of D-A-D materials prepared by atomistic modulation.
Resumo:
The selective formation of a single isomer of a 3+2] self-assembled organic cage from a reaction mixture of an unsymmetrical aldehyde and a flexible amine is discussed. The experimental and theoretical findings suggest that in such a process, the geometric features of the aldehyde play a key role.
Resumo:
The isometric fluctuation relation (IFR) P. I. Hurtado et al., Proc. Natl. Acad. Sci. USA 108, 7704 (2011)] relates the relative probability of current fluctuations of fixed magnitude in different spatial directions. We test its validity in an experiment on a tapered rod, rendered motile by vertical vibration and immersed in a sea of spherical beads. We analyze the statistics of the velocity vector of the rod and show that they depart significantly from the IFR of Hurtado et al. Aided by a Langevin-equation model we show that our measurements are largely described by an anisotropic generalization of the IFR R. Villavicencio et al., Europhys. Lett. 105, 30009 (2014)], with no fitting parameters, but with a discrepancy in the prefactor whose origin may lie in the detailed statistics of the microscopic noise. The experimentally determined large-deviation function of the velocity vector has a kink on a curve in the plane.
Resumo:
We present the circuit board integration of a self-healing mechanism to repair open faults. The electric field driven mechanism physically restores fractured interconnects in electronic circuits and has the ability to solve mazes. The repair is performed by conductive particles dispersed in an insulating fluid. We demonstrate the integration of the healing module onto printed circuit boards and the ability of maze solving. We model and perform experiments on the influence of the geometry of conductive particles as well as the terminal impedances of the route on the healing efficiency. The typical heal rate is 10 mu m/s with healed route having mean resistance of 8 k Omega across a 200 micron gap and depending on the materials and concentrations used. (C) 2015 AIP Publishing LLC.
Resumo:
Measurement of the self-coupling of the 125 GeV Higgs boson is one of the most crucial tasks for a high luminosity run of the LHC, and it can only be measured in the di-Higgs final state. In the minimal supersymmetric standard model, heavy CP even Higgs (H) can decay into a lighter 125 GeV Higgs boson (h) and, therefore, can influence the rate of di-Higgs production. We investigate the role of single H production in the context of measuring the self-coupling of h. We have found that the H -> hh decay can change the value of Higgs (h) self-coupling substantially, in a low tan beta regime where the mass of the heavy Higgs boson lies between 250 and 600 GeV and, depending on the parameter space, it may be seen as an enhancement of the self-coupling of the 125 GeV Higgs boson.
Resumo:
Efficient sensing of trace amount nitroaromatic (NAC) explosives has become a major research focus in recent time due to concerns over national security as well as their role as environment pollutants. NO2-containing electron-deficient aromatic compounds, such as picric acid (PA), trinitrotoluene (TNT), and dinitrotoluene (DNT), are the common constituents of many commercially available chemical explosives. In this article, we have summarized our recent developments on the rational design of electron-rich self-assembled discrete molecular sensors and their efficacy in sensing nitroaromatics both in solution as well as in vapor phase. Several p-electron-rich fluorescent metallacycles (squares, rectangles, and tweezers/pincers) and metallacages (trigonal and tetragonal prisms) have been synthesized by means of metal-ligand coordination-bonding interactions, with enough internal space to accommodate electron-deficient nitroaromatics at the molecular level by multiple supramolecular interactions. Such interactions subsequently result in the detectable fluorescence quenching of sensors even in the presence of trace quantities of nitroaromatics. The fascinating sensing characteristics of molecular architectures discussed in this article may enable future development of improved sensors for nitroaromatic explosives.
Resumo:
We investigated the nature of the cohesive energy between graphane sheets via multiple CH center dot center dot center dot HC interactions, using density functional theory (DFT) including dispersion correction (Grimmes D3 approach) computations of n]graphane sigma dimers (n = 6-73). For comparison, we also evaluated the binding between graphene sheets that display prototypical pi/pi interactions. The results were analyzed using the block-localized wave function (BLW) method, which is a variant of ab initio valence bond (VB) theory. BLW interprets the intermolecular interactions in terms of frozen interaction energy (Delta E-F) composed of electrostatic and Pauli repulsion interactions, polarization (Delta E-pol), charge-transfer interaction (Delta E-CT), and dispersion effects (Delta E-disp). The BLW analysis reveals that the cohesive energy between graphane sheets is dominated by two stabilizing effects, namely intermolecular London dispersion and two-way charge transfer energy due to the sigma CH -> sigma*(HC) interactions. The shift of the electron density around the nonpolar covalent C-H bonds involved in the intermolecular interaction decreases the C-H bond lengths uniformly by 0.001 angstrom. The Delta E-CT term, which accounts for similar to 15% of the total binding energy, results in the accumulation of electron density in the interface area between two layers. This accumulated electron density thus acts as an electronic glue for the graphane layers and constitutes an important driving force in the self-association and stability of graphane under ambient conditions. Similarly, the double faced adhesive tape style of charge transfer interactions was also observed among graphene sheets in which it accounts for similar to 18% of the total binding energy. The binding energy between graphane sheets is additive and can be expressed as a sum of CH center dot center dot center dot HC interactions, or as a function of the number of C-H bonds.
Resumo:
We report on the tunable photoluminescence characteristics of porous ZnO microsheets fabricated within 1-5 min of microwave irradiation in the presence of a capping agent such as citric acid, and mixture of citric acid with polyvinylpyrrolidone (PVP). The UV emission intensity reduces to 60% and visible emission increases tenfold when the molar concentration of citric acid is doubled. Further diminution of the intensity of UV emission (25%) is observed when PVP is mixed with citric acid. The addition of nitrogen donor ligands to the parent precursor leads to a red shift in the visible luminescence. The deep level emission covers the entire visible spectrum and gives an impression of white light emission from these ZnO samples. The detailed luminescence mechanism of our ZnO samples is described with the help of a band diagram constructed by using the theoretical models that describe the formation energy of the defect energy levels within the energy band structure. Oxygen vacancies play the key role in the variation of the green luminescence in the ZnO microsheets. Our research findings provide an insight that it is possible to retain the microstructure and simultaneously introduce defects into ZnO. The growth of the ZnO microsheets may be due to the self assembly of the fine sheets formed during the initial stage of nucleation.
Resumo:
In this work, a methodology to achieve ordinary-, medium-, and high-strength self-consolidating concrete (SCC) with and without mineral additions is proposed. The inclusion of Class F fly ash increases the density of SCC but retards the hydration rate, resulting in substantial strength gain only after 28 days. This delayed strength gain due to the use of fly ash has been considered in the mixture design model. The accuracy of the proposed mixture design model is validated with the present test data and mixture and strength data obtained from diverse sources reported in the literature.
Resumo:
The remarkable capability of nature to design and create excellent self-assembled nano-structures, especially in the biological world, has motivated chemists to mimic such systems with synthetic molecular and supramolecular systems. The hierarchically organized self-assembly of low molecular weight gelators (LMWGs) based on non-covalent interactions has been proven to be a useful tool in the development of well-defined nanostructures. Among these, the self-assembly of sugar-derived LMWGs has received immense attention because of their propensity to furnish biocompatible, hierarchical, supramolecular architectures that are macroscopically expressed in gel formation. This review sheds light on various aspects of sugar-derived LMWGs, uncovering their mechanisms of gelation, structural analysis, and tailorable properties, and their diverse applications such as stimuli-responsiveness, sensing, self-healing, environmental problems, and nano and biomaterials synthesis.
Resumo:
We found that Pd(II) ion (M) and the smallest 120 bidentate donor pyrimidine (L-a) self-assemble into a mononuclear M(L-a)(4) complex (1a) instead of the expected smallest M-12(L-a)(24) molecular ball (1), presumably due to the weak coordination nature of the pyrimidine. To construct such a pyrimidine bridged nanoball, we employed a new donor tris(4-(pyrimidin-5-yl)phenyl)amine (L); which upon selective complexation with Pd(II) ions resulted in the formation of a pregnant M24L24 molecular nanoball (2) consisting of a pyrimidine-bridged Pd-12 baby-ball supported by a Pd-12 larger mother-ball. The formation of the baby-ball was not successful without the support of the mother-ball. Thus, we created an example of a self-assembly where the inner baby-ball resembling to the predicted M-12(L-a)(24) ball (1) was incarcerated by the giant outer mother-ball by means of geometrical constraints. Facile conversion of the pregnant ball 2 to a smaller M-12(L-b)(24) ball 3 with dipyridyl donor was achieved in a single step.
Resumo:
Folding of Ubiquitin (Ub), a functionally important protein found in eukaryotic organisms, is investigated at low and neutral pH at different temperatures using simulations of the coarse-grained self-organized-polymer model with side chains (SOP-SC). The melting temperatures (T-m's), identified with the peaks in the heat capacity curves, decrease as pH decreases, in qualitative agreement with experiments. The calculated radius of gyration, showing dramatic variations with pH, is in excellent agreement with scattering experiments. At T-m Ub folds in a two-state manner at low and neutral pH. Clustering analysis of the conformations sampled in equilibrium folding trajectories at T-m with multiple transitions between the folded and unfolded states, shows a network of metastable states connecting the native and unfolded states. At low and neutral pH, Ub folds with high probability through a preferred set of conformations resulting in a pH-dependent dominant folding pathway. Folding kinetics reveal that Ub assembly at low pH occurs by multiple pathways involving a combination of nucleation-collapse and diffusion collision mechanism. The mechanism by which Ub folds is dictated by the stability of the key secondary structural elements responsible for establishing long-range contacts and collapse of Ub. Nucleation collapse mechanism holds if the stability of these elements are marginal, as would be the case at elevated temperatures. If the lifetimes associated with these structured microdomains are on the order of hundreds of microseconds, then Ub folding follows the diffusion collision mechanism with intermediates, many of which coincide with those found in equilibrium. Folding at neutral pH is a sequential process with a populated intermediate resembling that sampled at equilibrium. The transition state structures, obtained using a P-fold analysis, are homogeneous and globular with most of the secondary and tertiary structures being native-like. Many of our findings for both the thermodynamics and kinetics of folding are not only in agreement with experiments but also provide missing details not resolvable in standard experiments. The key prediction that folding mechanism varies dramatically with pH is amenable to experimental tests.
Resumo:
A new chiral amphiphilic salicylideneaniline bearing a terminal pyridine was synthesized. It formed reverse vesicles in toluene. The addition of Ag+, however, reversibly transforms these reverse vesicles into left-handed nanohelices accompanied by spontaneous gel formation at room temperature.
Resumo:
A benzil-based semi-rigid dinuclear organometallic acceptor 4,4'-bistrans-Pt(PEt3)(2)(NO3)(ethynyl)]benzil (bisPt-NO3) containing a Pt-ethynyl functionality was synthesized in good yield and characterized by multinuclear NMR (H-1, P-31, and C-13), electrospray ionization mass spectrometry (ESI-MS), and single-crystal X-ray diffraction analysis of the iodide analogue bisPt-I. The stoichiometric (1:1) combination of the acceptor bisPt-NO3 separately with four different ditopic donors (L-1-L-4; L-1 = 9-ethyl-3,6-di(1H-imidazol-1-yl)-9H-carbazole, L-2 = 1,4-bis((1H-imidazol-1-yl)methyl)benzene, L-3 = 1,3-bis((1H-imidazol-1-yl)methyl)benzene and L-4 = 9,10-bis((1H-imidazol-1-yl) methyl)anthracene) yielded four 2 + 2] self-assembled metallacycles M-1-M-4 in quantitative yields, respectively. All these newly synthesized assemblies were characterized by various spectroscopic techniques (NMR, IR, ESI-MS) and their sizes/shapes were predicted through geometry optimization employing the PM6 semi-empirical method. The benzil moiety was introduced in the backbone of the acceptor bisPt-NO3 due to the interesting structural feature of long carbonyl C-C bond (similar to 1.54 angstrom), which enabled us to probe the role of conformational flexibility on size and shapes of the resulting coordination ensembles.
Resumo:
The micro-level properties of different self compacting concrete (SCC) mixes with and without mineral admixures are studied. The study considers SCC as a two phase material consisting of matrix and aggregate. Micro indentation technique is employed to obtain the hardness of individual phases and to compute the micro-property (modulus of elasticity). Using a self consistent homogenization procedure, the micro-property is scaled-up to obtain the macro-property which is shown to agree with the experimentally obtained macro values. It is seen that there exists a smaller interfacial transition zone at different ages of curing across all the mixes due to the presence of more fines in SCC. Also, there is no significant change in the property of the SCC having no fly ash or silica fume beyond 28 days whereas a substantial change in the micro and macro properties are seen in the SCC having fly ash and silica fume.