247 resultados para Schoolhome Theory
Resumo:
We develop a general theory of Markov chains realizable as random walks on R-trivial monoids. It provides explicit and simple formulas for the eigenvalues of the transition matrix, for multiplicities of the eigenvalues via Mobius inversion along a lattice, a condition for diagonalizability of the transition matrix and some techniques for bounding the mixing time. In addition, we discuss several examples, such as Toom-Tsetlin models, an exchange walk for finite Coxeter groups, as well as examples previously studied by the authors, such as nonabelian sandpile models and the promotion Markov chain on posets. Many of these examples can be viewed as random walks on quotients of free tree monoids, a new class of monoids whose combinatorics we develop.
Resumo:
A self-consistent mode coupling theory (MCT) with microscopic inputs of equilibrium pair correlation functions is developed to analyze electrolyte dynamics. We apply the theory to calculate concentration dependence of (i) time dependent ion diffusion, (ii) intermediate scattering function of the constituent ions, and (iii) ion solvation dynamics in electrolyte solution. Brownian dynamics with implicit water molecules and molecular dynamics method with explicit water are used to check the theoretical predictions. The time dependence of ionic self-diffusion coefficient and the corresponding intermediate scattering function evaluated from our MCT approach show quantitative agreement with early experimental and present Brownian dynamic simulation results. With increasing concentration, the dispersion of electrolyte friction is found to occur at increasingly higher frequency, due to the faster relaxation of the ion atmosphere. The wave number dependence of intermediate scattering function, F(k, t), exhibits markedly different relaxation dynamics at different length scales. At small wave numbers, we find the emergence of a step-like relaxation, indicating the presence of both fast and slow time scales in the system. Such behavior allows an intriguing analogy with temperature dependent relaxation dynamics of supercooled liquids. We find that solvation dynamics of a tagged ion exhibits a power law decay at long times-the decay can also be fitted to a stretched exponential form. The emergence of the power law in solvation dynamics has been tested by carrying out long Brownian dynamics simulations with varying ionic concentrations. The solvation time correlation and ion-ion intermediate scattering function indeed exhibit highly interesting, non-trivial dynamical behavior at intermediate to longer times that require further experimental and theoretical studies. (c) 2015 AIP Publishing LLC.
Resumo:
We set up the theory of newforms of half-integral weight on Gamma(0)(8N) and Gamma(0)(16N), where N is odd and squarefree. Further, we extend the definition of the Kohnen plus space in general for trivial character and also study the theory of newforms in the plus spaces on Gamma(0)(8N), Gamma(0)(16N), where N is odd and squarefree. Finally, we show that the Atkin-Lehner W-operator W-4 acts as the identity operator on S-2k(new)(4N), where N is odd and squarefree. This proves that S-2k(-)(4) = S-2k(4).
Resumo:
Current applications of statistical thermodynamic theories for clathrate hydrates do not incorporate the translational and rotational movement of water molecules of the hydrate lattice,in a rigorous manner. Previous studies have shown that the movement of water molecules has a significant effect on the properties of clathrate hydrates. In this Article, a method is presented to incorporate the effect of water movement with as much rigor as possible. This method is then used to calculate the Langmuir constant of the guest species in a clathrate hydrate. Unlike previous studies on modeling of clathrate hydrate thermodynamics, the method presented in this paper does not regress either the intermolecular potentials or the properties of the empty hydrate from clathrate phase equilibria data. Also the properties of empty hydrate used in the theory do not depend on the nature and composition of the guest molecules. The predicted phase equilibria from the resulting theory are shown to be highly accurate and thermodynamically consistent by comparing them with the phase equilibria computed directly from molecular simulations.
Resumo:
Mathematics is beautiful and precise and often necessary to understand complex biological phenomena. And yet biologists cannot always hope to fully understand the mathematical foundations of the theory they are using or testing. How then should biologists behave when mathematicians themselves are in dispute? Using the on-going controversy over Hamilton's rule as an example, I argue that biologists should be free to treat mathematical theory with a healthy dose of agnosticism. In doing so biologists should equip themselves with a disclaimer that publicly admits that they cannot entirely attest to the veracity of the mathematics underlying the theory they are using or testing. The disclaimer will only help if it is accompanied by three responsibilities - stay bipartisan in a dispute among mathematicians, stay vigilant and help expose dissent among mathematicians, and make the biology larger than the mathematics. I must emphasize that my goal here is not to take sides in the on-going dispute over the mathematical validity of Hamilton's rule, indeed my goal is to argue that we should refrain from taking sides.
Resumo:
We study the free fermion theory in 1+1 dimensions deformed by chemical potentials for holomorphic, conserved currents at finite temperature and on a spatial circle. For a spin-three chemical potential mu, the deformation is related at high temperatures to a higher spin black hole in hs0] theory on AdS(3) spacetime. We calculate the order mu(2) corrections to the single interval Renyi and entanglement entropies on the torus using the bosonized formulation. A consistent result, satisfying all checks, emerges upon carefully accounting for both perturbative and winding mode contributions in the bosonized language. The order mu(2) corrections involve integrals that are finite but potentially sensitive to contact term singularities. We propose and apply a prescription for defining such integrals which matches the Hamiltonian picture and passes several non-trivial checks for both thermal corrections and the Renyi entropies at this order. The thermal corrections are given by a weight six quasi-modular form, whilst the Renyi entropies are controlled by quasi-elliptic functions of the interval length with modular weight six. We also point out the well known connection between the perturbative expansion of the partition function in powers of the spin-three chemical potential and the Gross-Taylor genus expansion of large-N Yang-Mills theory on the torus. We note the absence of winding mode contributions in this connection, which suggests qualitatively different entanglement entropies for the two systems.
Resumo:
Using different proxies of solar activity, we have studied the following features of the solar cycle: i) The linear correlation between the amplitude of cycle and its decay rate, ii) the linear correlation between the amplitude of cycle and the decay rate of cycle , and iii) the anti-correlation between the amplitude of cycle and the period of cycle . Features ii) and iii) are very useful because they provide precursors for future cycles. We have reproduced these features using a flux-transport dynamo model with stochastic fluctuations in the Babcock-Leighton effect and in the meridional circulation. Only when we introduce fluctuations in meridional circulation, are we able to reproduce different observed features of the solar cycle. We discuss the possible reasons for these correlations.
Resumo:
We propose a new approach to clustering. Our idea is to map cluster formation to coalition formation in cooperative games, and to use the Shapley value of the patterns to identify clusters and cluster representatives. We show that the underlying game is convex and this leads to an efficient biobjective clustering algorithm that we call BiGC. The algorithm yields high-quality clustering with respect to average point-to-center distance (potential) as well as average intracluster point-to-point distance (scatter). We demonstrate the superiority of BiGC over state-of-the-art clustering algorithms (including the center based and the multiobjective techniques) through a detailed experimentation using standard cluster validity criteria on several benchmark data sets. We also show that BiGC satisfies key clustering properties such as order independence, scale invariance, and richness.
Resumo:
We present a framework for obtaining reliable solid-state charge and optical excitations and spectra from optimally tuned range-separated hybrid density functional theory. The approach, which is fully couched within the formal framework of generalized Kohn-Sham theory, allows for the accurate prediction of exciton binding energies. We demonstrate our approach through first principles calculations of one- and two-particle excitations in pentacene, a molecular semiconducting crystal, where our work is in excellent agreement with experiments and prior computations. We further show that with one adjustable parameter, set to produce the known band gap, this method accurately predicts band structures and optical spectra of silicon and lithium fluoride, prototypical covalent and ionic solids. Our findings indicate that for a broad range of extended bulk systems, this method may provide a computationally inexpensive alternative to many-body perturbation theory, opening the door to studies of materials of increasing size and complexity.
Resumo:
The reported values of bandgap of rutile GeO2 calculated by the standard density functional theory within local-density approximation (LDA)/generalized gradient approximation (GGA) show a wide variation (similar to 2 eV), whose origin remains unresolved. Here, we investigate the reasons for this variation by studying the electronic structure of rutile-GeO2 using many-body perturbation theory within the GW framework. The bandgap as well as valence bandwidth at Gamma-point of rutile phase shows a strong dependence on volume change, which is independent of bandgap underestimation problem of LDA/GGA. This strong dependence originates from a change in hybridization among O-p and Ge-(s and p) orbitals. Furthermore, the parabolic nature of first conduction band along X-Gamma-M direction changes towards a linear dispersion with volume expansion. (C) 2015 AIP Publishing LLC.
Resumo:
Fermi gases with generalized Rashba spin-orbit coupling induced by a synthetic gauge field have the potential of realizing many interesting states, such as rashbon condensates and topological phases. Here, we address the key open problem of the fluctuation theory of such systems and demonstrate that beyond-Gaussian effects are essential to capture the finite temperature physics of such systems. We obtain their phase diagram by constructing an approximate non-Gaussian theory. We conclusively establish that spin-orbit coupling can enhance the exponentially small transition temperature (T-c) of a weakly attracting superfluid to the order of the Fermi temperature, paving a pathway towards high T-c superfluids.
Resumo:
This paper presents the stability analysis of functionally graded plate integrated with piezoelectric actuator and sensor at the top and bottom face, subjected to electrical and mechanical loading. The finite element formulation is based on first order and higher order shear deformation theory, degenerated shell element, von-Karman hypothesis and piezoelectric effect. The equation for static analysis is derived by using the minimum energy principle and solutions for critical buckling load is obtained by solving eigenvalue problem. The material properties of the functionally graded plate are assumed to be graded along the thickness direction according to simple power law function. Two types of boundary conditions are used, such as SSSS (simply supported) and CSCS (simply supported along two opposite side perpendicular to the direction of compression and clamped along the other two sides). Sensor voltage is calculated using present analysis for various power law indices and FG (functionally graded) material gradations. The stability analysis of piezoelectric FG plate is carried out to present the effects of power law index, material variations, applied mechanical pressure and piezo effect on buckling and stability characteristics of FG plate.
Resumo:
We consider a system with multiple Femtocells operating in a Macrocell. The transmissions in one Femtocell interfere with its neighboring Femtocells as well as with the Macrocell Base Station. We model Femtocells as selfish nodes and the Macrocell Base Station protects itself by pricing subchannels for each usage. We use Stackelberg game model to study this scenario and obtain equilibrium policies that satisfy certain quality of service.
Resumo:
We formally extend the CFT techniques introduced in arXiv: 1505.00963, to phi(2d0/d0-2) theory in d = d(0) dimensions and use it to compute anomalous dimensions near d(0) = 3, 4 in a unified manner. We also do a similar analysis of the O(N) model in three dimensions by developing a recursive combinatorial approach for OPE contractions. Our results match precisely with low loop perturbative computations. Finally, using 3-point correlators in the CFT, we comment on why the phi(3) theory in d(0) = 6 is qualitatively different.
Resumo:
Using polydispersity index as an additional order parameter we investigate freezing/melting transition of Lennard-Jones polydisperse systems (with Gaussian polydispersity in size), especially to gain insight into the origin of the terminal polydispersity. The average inherent structure (IS) energy and root mean square displacement (RMSD) of the solid before melting both exhibit quite similar polydispersity dependence including a discontinuity at solid-liquid transition point. Lindemann ratio, obtained from RMSD, is found to be dependent on temperature. At a given number density, there exists a value of polydispersity index (delta (P)) above which no crystalline solid is stable. This transition value of polydispersity(termed as transition polydispersity, delta (P) ) is found to depend strongly on temperature, a feature missed in hard sphere model systems. Additionally, for a particular temperature when number density is increased, delta (P) shifts to higher values. This temperature and number density dependent value of delta (P) saturates surprisingly to a value which is found to be nearly the same for all temperatures, known as terminal polydispersity (delta (TP)). This value (delta (TP) similar to 0.11) is in excellent agreement with the experimental value of 0.12, but differs from hard sphere transition where this limiting value is only 0.048. Terminal polydispersity (delta (TP)) thus has a quasiuniversal character. Interestingly, the bifurcation diagram obtained from non-linear integral equation theories of freezing seems to provide an explanation of the existence of unique terminal polydispersity in polydisperse systems. Global bond orientational order parameter is calculated to obtain further insights into mechanism for melting.