245 resultados para Rutherford backscattering in channeling geometry
Resumo:
An experimental study of plane strain wedge indentation of a model porous brittle solid has been made to understand the effect of indentation parameters on the evolution of the deformation field and the accompanying volume change. A series of high-speed, high-resolution images of the indentation region and simultaneous measurements of load response were captured through the progression of the indentation process. Particle image velocimetry analysis of the images facilitated in situ measurement of the evolution of the resulting plastic zone in terms of incremental material displacement (velocity), strain rate, strain and volume change (e.g., local pore collapse). These measurements revealed initiation and propagation of flow localizations and fractures, as well as enabled estimate of volume changes occurring in the deformation zone. The results were directly compared with theoretical estimates of indentation pressure and deformation zone geometry and were used to validate a modified cavity expansion solution that incorporates effects of volume changes in the plastic zone. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
An energy approach within the framework of thermodynamics is used to model the fatigue process in plain concrete. Fatigue crack growth is an irreversible process associated with an irreversible entropy gain. A closed-form expression for entropy generated during fatigue in terms of energy dissipated is derived using principles of dimensional analysis and self-similarity. An increase in compliance is considered as a measure of damage accumulated during fatigue. The entropy at final fatigue failure is shown to be independent of loading and geometry and is proposed as a material property. A relationship between energy dissipated and number of cycles of fatigue loading is obtained. (C) 2015 American Society of Civil Engineers.
Resumo:
We perform two and three dimensional numerical simulations of plume formation in density and viscosity stratified fluid systems. We show that the ambient to plume fluid viscosity ratio strongly affects the near wall plume structures (line or sheet plumes) such as plume spacing and shape of plumes. We observe that where mushroom-like plumes are observed for lower viscosity ratios, taller plumes with bulbous heads form for high viscosity ratios. Plume structure and spacing are in good agreement with experimental results. By studying the geometry of the line plumes and the flow in the circulation cells, we discuss the mechanisms of their formation and the dynamics of merging. We show that an increase in the viscosity ratio decreases the total length of line plumes in the planform which indicates a decreased mixing at higher viscosity ratios. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Due to its complex honeycomb structure, the numerical modeling of the geocell has always been a big challenge. Generally, the equivalent composite approach is used to model the geocells. In the equivalent composite approach, the geocellsoil composite is treated as the soil layer with improved strength and stiffness values. Though this approach is very simple, it is unrealistic to model the geocells as the soil layer. This paper presents a more realistic approach of modeling the geocells in three-dimensional (3D) framework by considering the actual curvature of the geocell pocket. A square footing resting on geocell reinforced soft clay bed was modeled using the ``fast Lagrangian analysis of continua in 3D'' (FLAC(3D)) finite difference package. Three different material models, namely modified Cam-clay, Mohr-Coulomb, and linear elastic were used to simulate the behaviour of foundation soil, infill soil and the geocell, respectively. It was found that the geocells distribute the load laterally to the wider area below the footing as compared to the unreinforced case. More than 50% reduction in the stress was observed in the clay bed in the presence of geocells. In addition to geocells, two other cases, namely, only geogrid and geocell with additional basal geogrid cases were also simulated. The numerical model was systematically validated with the results of the physical model tests. Using the validated numerical model, parametric studies were conducted to evaluate the influence of various geocell properties on the performance of reinforced clay beds.
Resumo:
Let X be a convex curve in the plane (say, the unit circle), and let be a family of planar convex bodies such that every two of them meet at a point of X. Then has a transversal of size at most . Suppose instead that only satisfies the following ``(p, 2)-condition'': Among every p elements of , there are two that meet at a common point of X. Then has a transversal of size . For comparison, the best known bound for the Hadwiger-Debrunner (p, q)-problem in the plane, with , is . Our result generalizes appropriately for if is, for example, the moment curve.
Resumo:
Direct measurement of three-dimensional (3-D) forces between an atomic force microscope (AFM) probe and the sample benefits diverse applications of AFM, including force spectroscopy, nanometrology, and manipulation. This paper presents the design and evaluation of a measurement system, wherein the deflection of the AFM probe is obtained at two points to enable direct measurement of all the three components of 3-D tip-sample forces in real time. The optimal locations for measurement of deflection on the probe are derived for a conventional AFM probe. Further, a new optimal geometry is proposed for the probe that enables measurement of 3-D forces with identical sensitivity and nearly identical resolution along all three axes. Subsequently, the designed measurement system and the optimized AFM probe are both fabricated and evaluated. The evaluation demonstrates accurate measurement of tip-sample forces with minimal cross-sensitivities. Finally, the real-time measurement system is employed as part of a feedback control system to regulate the normal component of the interaction force, and to perform force-controlled scribing of a groove on the surface of polymethyl methacrylate.
Resumo:
Turbulence-transport-chemistry interaction plays a crucial role on the flame surface geometry, local and global reactionrates, and therefore, on the propagation and extinction characteristics of intensely turbulent, premixed flames encountered in LPP gas-turbine combustors. The aim of the present work is to understand these interaction effects on the flame surface annihilation and extinction of lean premixed flames, interacting with near isotropic turbulence. As an example case, lean premixed H-2-air mixture is considered so as to enable inclusion of detailed chemistry effects in Direct Numerical Simulations (DNS). The work is carried out in two phases namely, statistically planar flames and ignition kernel, both interacting with near isotropic turbulence, using the recently proposed Flame Particle Tracking (FPT) technique. Flame particles are surface points residing and commoving with an iso-scalar surface within a premixed flame. Tracking flame particles allows us to study the evolution of propagating surface locations uniquely identified with time. In this work, using DNS and FPT we study the flame speed, reaction rate and transport histories of such flame particles residing on iso-scalar surfaces. An analytical expression for the local displacement flame speed (SO is derived, and the contribution of transport and chemistry on the displacement flame speed is identified. An examination of the results of the planar case leads to a conclusion that the cause of variation in S-d may be attributed to the effects of turbulent transport and heat release rate. In the second phase of this work, the sustenance of an ignition kernel is examined in light of the S-curve. A newly proposed Damkohler number accounting for local turbulent transport and reaction rates is found to explain either the sustenance or otherwise propagation of flame kernels in near isotropic turbulence.
Resumo:
Experimental charge density analysis combined with the quantum crystallographic technique of X-ray wavefunction refinement (XWR) provides quantitative insights into the intra-and intermolecular interactions formed by acetazolamide, a diuretic drug. Firstly, the analysis of charge density topology at the intermolecular level shows the presence of exceptionally strong interaction motifs such as a DDAA-AADD (D-donor, A-acceptor) type quadruple hydrogen bond motif and a sulfonamide dimer synthon. The nature and strength of intra-molecular S center dot center dot center dot O chalcogen bonding have been characterized using descriptors from the multipole model (MM) and XWR. Although pure geometrical criteria suggest the possibility of two intra-molecular S center dot center dot center dot O chalcogen bonded ring motifs, only one of them satisfies the ``orbital geometry'' so as to exhibit an interaction in terms of an electron density bond path and a bond critical point. The presence of `s-holes' on the sulfur atom leading to the S center dot center dot center dot O chalcogen bond has been visualized on the electrostatic potential surface and Laplacian isosurfaces close to the `reactive surface'. The electron localizability indicator (ELI) and Roby bond orders derived from the `experimental wave function' provide insights into the nature of S center dot center dot center dot O chalcogen bonding.
Resumo:
The kinematic flow pattern in slow deformation of a model dense granular medium is studied at high resolution using in situ imaging, coupled with particle tracking. The deformation configuration is indentation by a flat punch under macroscopic plane-strain conditions. Using a general analysis method, velocity gradients and deformation fields are obtained from the disordered grain arrangement, enabling flow characteristics to be quantified. The key observations are the formation of a stagnation zone, as in dilute granular flow past obstacles; occurrence of vortices in the flow immediately underneath the punch; and formation of distinct shear bands adjoining the stagnation zone. The transient and steady state stagnation zone geometry, as well as the strength of the vortices and strain rates in the shear bands, are obtained from the experimental data. All of these results are well-reproduced in exact-scale non-smooth contact dynamics simulations. Full 3D numerical particle positions from the simulations allow extraction of flow features that are extremely difficult to obtain from experiments. Three examples of these, namely material free surface evolution, deformation of a grain column below the punch and resolution of velocities inside the primary shear band, are highlighted. The variety of flow features observed in this model problem also illustrates the difficulty involved in formulating a complete micromechanical analytical description of the deformation.
Resumo:
Human transthyretin (hTTR) is a multifunctional protein that is involved in several neurodegenerative diseases. Besides the transportation of thyroxin and vitamin A, it is also involved in the proteolysis of apolipoprotein A1 and A beta peptide. Extensive analyses of 32 high-resolution X-ray and neutron diffraction structures of hTTR followed by molecular-dynamics simulation studies using a set of 15 selected structures affirmed the presence of 44 conserved water molecules in its dimeric structure. They are found to play several important roles in the structure and function of the protein. Eight water molecules stabilize the dimeric structure through an extensive hydrogen-bonding network. The absence of some of these water molecules in highly acidic conditions (pH <= 4.0) severely affects the interfacial hydrogen-bond network, which may destabilize the native tetrameric structure, leading to its dissociation. Three pairs of conserved water molecules contribute to maintaining the geometry of the ligand-binding cavities. Some other water molecules control the orientation and dynamics of different structural elements of hTTR. This systematic study of the location, absence, networking and interactions of the conserved water molecules may shed some light on various structural and functional aspects of the protein. The present study may also provide some rational clues about the conserved water-mediated architecture and stability of hTTR.
Resumo:
Photoactive metal complexes have emerged as potential candidates in the photodynamic therapy (PDT) of cancer. We present here the synthesis, characterization and visible light-triggered anticancer activity of two novel mixed-ligand oxo-bridged iron(III) complexes, viz., {Fe(L)(acac)}(2)(mu-O)](ClO4)(2) (1) and {Fe (L)(cur)}(2)(mu-O)](ClO4)(2) (2) where L is bis-(2-pyridylmethyl)-benzylamine, acac is acetylacetonate and cur is the monoanion of curcumin (bis(4-hydroxy-3-methoxyphenyl)-1,6-diene-3,5-dione). The crystal structure of complex 1 (as PF6 salt, 1a) shows distorted octahedral geometry of each iron(III) centre formed by the FeN3O3 core. The 1: 2 electrolytic complexes are stable in solution and retain their oxo-bridged identity in aqueous medium. Complex 2 has a strong absorption band in the visible region and shows promising photocytotoxicity in HeLa and MCF-7 cancer cells in visible light giving respective IC50 values of 3.1 +/- 0.4 lM and 4.9 +/- 0.5 lM while remains non-toxic in the dark (IC50 > 50 lM). The control complex 1 is inactive both in the light and dark. Complex 2 accumulates in cytoplasm of HeLa and MCF-7 cells as evidenced from fluorescence microscopy and triggers apoptotic cell death via light-assisted generation of reactive oxygen species (ROS). Taken together, complex 2 with its promising photocytotoxicity but negligible dark toxicity in cancer cells has significant photochemotherapeutic potential for applications in PDT. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
In this work, we address the issue of modeling squeeze film damping in nontrivial geometries that are not amenable to analytical solutions. The design and analysis of microelectromechanical systems (MEMS) resonators, especially those that use platelike two-dimensional structures, require structural dynamic response over the entire range of frequencies of interest. This response calculation typically involves the analysis of squeeze film effects and acoustic radiation losses. The acoustic analysis of vibrating plates is a very well understood problem that is routinely carried out using the equivalent electrical circuits that employ lumped parameters (LP) for acoustic impedance. Here, we present a method to use the same circuit with the same elements to account for the squeeze film effects as well by establishing an equivalence between the parameters of the two domains through a rescaled equivalent relationship between the acoustic impedance and the squeeze film impedance. Our analysis is based on a simple observation that the squeeze film impedance rescaled by a factor of jx, where x is the frequency of oscillation, qualitatively mimics the acoustic impedance over a large frequency range. We present a method to curvefit the numerically simulated stiffness and damping coefficients which are obtained using finite element analysis (FEA) analysis. A significant advantage of the proposed method is that it is applicable to any trivial/nontrivial geometry. It requires very limited finite element method (FEM) runs within the frequency range of interest, hence reducing the computational cost, yet modeling the behavior in the entire range accurately. We demonstrate the method using one trivial and one nontrivial geometry.
Resumo:
Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen-air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen-air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (S-d) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in S-d is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description. (C) 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
The influence of Pt layer thickness on the fracture behavior of PtNiAl bond coats was studied in situ using clamped micro-beam bend tests inside a scanning electron microscope (SEM). Clamped beam bending is a fairly well established micro-scale fracture test geometry that has been previously used in determination of fracture toughness of Si and PtNiAl bond coats. The increasing amount of Pt in the bond coat matrix was accompanied by several other microstructural changes such as an increase in the volume fraction of alpha-Cr precipitate particles in the coating as well as a marginal decrease in the grain size of the matrix. In addition, Pt alters the defect chemistry of the B2-NiAl structure, directly affecting its elastic properties. A strong correlation was found between the fracture toughness and the initial Pt layer thickness associated with the bond coat. As the Pt layer thickness was increased from 0 to 5 mu m, resulting in increasing Pt concentration from 0 to 14.2 at.% in the B2-NiAl matrix and changing alpha-Cr precipitate fraction, the initiation fracture toughness (K-IC) was seen to rise from 6.4 to 8.5 MPa.m(1/2). R-curve behavior was observed in these coatings, with K-IC doubling for a crack propagation length of 2.5 mu m. The reasons for the toughening are analyzed to be a combination of material's microstructure (crack kinking and bridging due to the precipitates) as well as size effects, as the crack approaches closer to the free surface in a micro-scale sample.
Resumo:
We have addressed the microscopic transport mechanism at the switching or `on-off' transition in transition metal dichalcogenide (TMDC) field-effect transistors (FETs), which has been a controversial topic in TMDC electronics, especially at room temperature. With simultaneous measurement of channel conductivity and its slow time-dependent fluctuation (or noise) in ultrathin WSe2 and MoS2 FETs on insulating SiO2 substrates where noise arises from McWhorter-type carrier number fluctuations, we establish that the switching in conventional backgated TMDC FETs is a classical percolation transition in a medium of inhomogeneous carrier density distribution. From the experimentally observed exponents in the scaling of noise magnitude with conductivity, we observe unambiguous signatures of percolation in a random resistor network, particularly, in WSe2 FETs close to switching, which crosses over to continuum percolation at a higher doping level. We demonstrate a powerful experimental probe to the microscopic nature of near-threshold electrical transport in TMDC FETs, irrespective of the material detail, device geometry, or carrier mobility, which can be extended to other classes of 2D material-based devices as well.