428 resultados para Resonance Fluorescence-spectrum
Resumo:
This paper considers the problem of spectrum sensing, i.e., the detection of whether or not a primary user is transmitting data by a cognitive radio. The Bayesian framework is adopted, with the performance measure being the probability of detection error. A decentralized setup, where N sensors use M observations each to arrive at individual decisions that are combined at a fusion center to form the overall decision is considered. The unknown fading channel between the primary sensor and the cognitive radios makes the individual decision rule computationally complex, hence, a generalized likelihood ratio test (GLRT)-based approach is adopted. Analysis of the probabilities of false alarm and miss detection of the proposed method reveals that the error exponent with respect to M is zero. Also, the fusion of N individual decisions offers a diversity advantage, similar to diversity reception in communication systems, and a tight bound on the error exponent is presented. Through an analysis in the low power regime, the number of observations needed as a function of received power, to achieve a given probability of error is determined. Monte-Carlo simulations confirm the accuracy of the analysis.
Resumo:
Time-resolved fluorescence studies were carried out on a series of free-base and zinc(II) derivatives of meso-tetraphenylporphyrins covalently linked to either 1,3-dinitrobenzene (DNB) or 1,3,5-trinitrobenzene (TNB) acceptor units. These acceptor units were linked at different sites (at the ortho, meta or para positions of one of the phenyl groups of meso-tetraphenylporphyrin) to the donor porphyrins such that the resulting isomeric intramolecular donor-acceptor complexes exhibit different centre-to-centre (ctc) distances and relative orientations. Biexponential fluorescence decay profiles observed for several of these covalently linked complexes were rationalized in terms of the presence of ''closed'' and ''extended'' conformers. Detailed analyses of the fluorescence decay data have provided a comprehensive understanding of the photoinduced electron transfer (PET) reactions occurring in systems containing zinc(II) porphyrin donors. It is observed that although DNB-linked zinc(II) complexes follow the trends predicted for the efficiency of PET with respect to donor-acceptor distance, the TNB-linked zinc(II) porphyrins exhibit a behaviour which is dictated by steric effects. Similarly, although the thermodynamic criteria predict a greater efficiency of charge separation in TNB-linked complexes compared with DNB-linked complexes, the reverse trend observed has been attributed to orientational effects. In the complexes containing free-base porphyrin donors, PET is expected to be less efficient from a thermodynamic viewpoint. In a few of these cases, fluorescence quenching seems to occur by parallel mechanisms other than PET.
Resumo:
Ferromagnetic resonance spectra of La1-xCaxMnO3 powders (0.1 less than or equal to x 0.9) have been investigated over a range of temperatures. The spectra could be fitted to a sum of two Lorentzians for all the compositions. The intense line with a nearly constant g shows a linear decrease in linewidth with increase in temperature, while the weaker line with a variable g shows a maximum in linewidth in the T-c region. The latter is also associated with a g(eff) which depends on the composition. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
Several covalently linked bisporphyrin systems, free-base (H2P---H2P), hybrid bisporphyrins (Zn---H2P) and Zn(II) dimers (ZnP---ZnP) and their 1:1 molecular complexes with sym 1,3,5-trinitrobenzene have been investigated by optical absorption and emission, and magnetic resonance spectroscopic methods. In these systems, two porphyrin units are linked singly through one of the meso aryl groups via ether linkages of variable length. The bisporphyrins cooperatively bind a molecule of a ?-acceptor; 1,3,5-trinitrobenzene (TNB). The binding constant values vary with interchromophore separation. Maximum binding is observed in the bisporphyrin bearing a two-ether covalent linkage. It is found that TNB quenches the fluorescence of the two porphyrine units in a selective manner. It is suggested that a critical distance between the two porphyrin units is necessary for the observance of maximum cooperative intermolecular binding with an acceptor.
Resumo:
We measure the Cu 2p X-ray photoemission spectrum (XPS) of Sr2CuO3 and analyze it by means of exact diagonalization calculations for (CunO3n)(4n-) clusters. In Sr2CuO3, the intensity ratio of the 3d(y) satellite to the 3d(10)(L) under bar main line is 0.35-0.4, which is evidently smaller than that in the other high-T-c related cuprates. We ascribe it as the smaller charge-transfer energy between the Cu 3d and O 2p. The origin of the broad main-line of Sr2CuO3 is also discussed.
Resumo:
Studies have been carried out in glasses containing Fe2O3, V2O5, and Fe2O3 + V2O5. Mossbauer studies in the ZnO-B2O3-Fe2O3 system show that iron is present as Fe3+ with tetrahedral coordination and that the isomer shift and the quadrupole splitting decrease with increase of Fe2O3 Content; similarly, the isomer shift and quadrupole splitting are also found to decrease with increasing ZnO. On the other hand, in the Na2O-ZnO-B2O3-Fe2O3 system, the isomer shift increases with Na2O or ZnO while the quadrupole splitting is fairly insensitive. Electron paramagnetic resonance in the ZnO-B2O3-Fe2O3 system shows signals at g = 4.20 and 2.0, whose intensity and linewidth show strong dependence on Fe2O3 content. In the ZnO-B2O3-V2O5 system, electron paramagnetic resonance shows that vanadium is present as the vanadyl complex, and the hyperfine coupling constants, A(parallel-to) and A(perpendicular-to) decrease with increasing V2O5 content; on the other hand, g(parallel-to) decreases and g(perpendicular-to) increases slightly, indicating an increase in tetragonal distortion. Zinc borate glasses containing Fe2O3 + V2O5 do not show the hyperfine structure of V4+ due to the interaction between Fe3+ and V4+
Resumo:
Sheep liver serine hydroxymethyltransferase (EC 2.1.2.1) is a homotetramer of M(r) 213,000 requiring pyridoxal-5'-phosphate (PLP) as cofactor, Removal of PLP from the holoenzyme converted the enzyme to the apo form which, in addition to being inactive, was devoid of the characteristic absorption spectrum. Upon the addition of PLP to the apoenzyme, complete activity was restored and the visible absorption spectrum with a maximum at 425 nm was regained. The interaction of PLP with the apoenzyme revealed two phases of reaction with pseudo-first-order rate constants of 20 +/- 5 s(-1) and 12.2 +/- 2.0 x 10(-3) s(-1), respectively. However, addition of PLP to the apoenzyme did not cause gross conformational changes as evidenced by circular dichroic and fluorescence spectroscopy. Although conformationally apoenzyme and holoenzyme were indistinguishable, they had distinct apparent melting temperatures of 51 +/- 2 and 58 +/- 2 degrees C, respectively, and the reconstituted holoenzyme was thermally as stable as the native holoenzyme. These results suggested that there was no apparent difference in the secondary structure of holoenzyme, apoenzyme, and reconstituted holoenzyme, However, sedimentation analysis of the apoenzyme revealed the presence of two peaks of S-20,S-w values of 8.7 +/- 0.5 and 5.7 +/- 0.3 S, respectively. A similar pattern was observed when the apoenzyme was chromatographed on a calibrated Sephadex G-150 column. The first peak corresponded to the tetrameric form (M(r) 200,000 +/- 15,000) while the second peak had a M(r) of 130,000 +/- 10,000. Reconstitution experiments revealed that only the tetrameric form of the apoenzyme could be converted into an active holoenzyme while the dimeric form could not be reconstituted into an active enzyme. These results demonstrate that PLP plays an important role in maintaining the structural integrity of the enzyme by preventing the dissociation of the enzyme into subunits, in addition to its function in catalysis. (C) 1996 Academic Press, Inc.
Resumo:
Cu (0.1 mol%) doped ZnO nanopowders have been successfully synthesized by a wet chemical method at a relatively low temperature (300 degrees C). Powder X-ray diffraction (PXRD) analysis, scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, UV-Visible spectroscopy, Photoluminescence (PL) and Electron Paramagnetic Resonance (EPR) measurements were used for characterization. PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure of ZnO without any secondary phase. The particle size of as-formed product has been calculated by Williamson-Hall (W-H) plots and Scherrer's formula is found to be in the range of similar to 40 nm. TEM image confirms the nano size crystalline nature of Cu doped ZnO. SEM micrographs of undoped and Cu doped ZnO show highly porous with large voids. UV-Vis spectrum showed a red shift in the absorption edge in Cu doped ZnO. PL spectra show prominent peaks corresponding to near band edge UV emission and defect related green emission in the visible region at room temperature and their possible mechanisms have been discussed. The EPR spectrum exhibits a broad resonance signal at g similar to 2.049, and two narrow resonances one at g similar to 1.990 and other at g similar to 1.950. The broad resonance signal at g similar to 2.049 is a characteristic of Cu2+ ion whereas the signal at g similar to 1.990 and g similar to 1.950 can be attributed to ionized oxygen vacancies and shallow donors respectively. The spin concentration (N) and paramagnetic susceptibility (X) have been evaluated and discussed. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Micelles of different dimeric amphiphiles Br-, n-C(16)H(33)NMe(2)(+) -(CH)(m)-N(+)Me(2)-n-C16H33, Br- (where m = 3, 4, 5, 6, 8, 10, and 12) adapt different morphologies and internal packing arrangements in aqueous media depending on their spacer chain length (m). Detailed measurements of small angle neutron scattering (SANS) cross sections from different bis-cationic, dimeric surfactant micelles in aqueous media (D2O) are reported. The data have been analyzed using the Hayter and Penfold model for macro ion solution to compute the interparticle structure factor S(Q) taking into account the screened Coulomb interactions between the dimeric micelles. The SANS analysis clearly indicated that the extent of aggregate growth and the variations of shapes of the dimeric micelles depend primarily on the spacer chain length. With spacer chain length, m less than or equal to 4, the propensity of micellar growth was particularly pronounced. The effects of the variation of the concentration of dimeric surfactants with m = 5 and 10 on the SANS spectra and the effects of the temperature variation for the micellar system with m = 10 were also examined. The critical micelle concentrations (cmc) and their microenvironmental feature, namely, the microviscosities that the dimeric micellar aggregates offer to a solubilized, extrinsic fluorescence probe, 1,6-diphenyl-1,3,5-hexatriene, were also determined. The changes of cmcs and microviscosities as a function of spacer chain length have been explained in terms of conformational variations and progressive looping of the spacer in micellar core upon increasing m values.
Resumo:
The nuclear magnetic resonance imaging technique has been used to obtain images of different transverse and vertical sections in groundnut and sunflower seeds. Separate images have been obtained for oil and water components in the seeds. The spatial distribution of oil and water inside the seed has been obtained from the detailed analysis of the images. In the immature groundnut seeds obtained commercially, complementary oil and water distributions have been observed. Attempts have been made to explain these results.
Resumo:
Optical fractography was used to estimate growth of small cracks at notches under programmed FALSTAFF loading in an Al-Cu alloy. Crack sizes as low as 25 microns and growth rates over two orders of magnitude could be resolved using this technique. Randomized MiniFALSTAFF load sequence was modified into a programmed load equivalent with major loads either preceding or following marker loads. Crack growth rate under programmed FALSTAFF spectrum as estimated by optical fractography conformed to compliance based estimates on a SE(T) specimen. Long crack growth rates under programmed and randomized MiniFALSTAFF spectrum were essentially similar. Spectrum load fatigue crack growth was studied in central hole coupons under notch inelastic conditions. Scatter in growth rates for small notch cracks was found to be of the same magnitude as that of long cracks. Multiple fatigue cracks are observed at the notch root, and they appear to influence each other.
Resumo:
Multiple quantum-single quantum correlation experiments are employed for spectral simplification and determination of the relative signs of the couplings. In this study, we have demonstrated the excitation of three nuclei, triple quantum coherences and discussed the information obtainable from such experiments. The experiments have been carried out on doubly labeled acetonitrile and fluoroacetonitrile aligned in liquid crystalline media. The experiment is advantageous in providing many spectral parameters from a single experiment. The coherence pathways involved in the pulse sequence are described using product operators. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Time-resolved resonance Raman spectroscopy has been used to investigate the photochemistry of ubiquinone in cyclohexane, water and ethanol. In water the absorption of a single 248 nm photon produces triplet ubiquinone which then oxidises water, via electron transfer, to form the ubiquinone radical anion. In ethanol, however, the triplet state reacts with the solvent via both electron and hydrogen-atom transfer, the latter process forming the semihydroquinone. Only in the less reactive solvent, cyclohexane, is triplet quinone observed. The Raman bands observed for each of the species are assigned on the basis of similarities of their spectra to other quinones.
Resumo:
Anomalous changes in the infrared intensity of the cobalt-oxygen stretching modes in the infrared spectrum of lanthanum cobaltate (LaCoO3) suggest vibronic coupling. This phenomenon has been studied by infrared vibrational spectroscopy both by temperature-induced changes of spin-state occupation and pressure-induced changes of the crystal field splitting 10Dq.