276 resultados para Mass spectrum


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat and mass transfer studies in a calandria based reactor is quite complex both due to geometry and due to the complex mixing flow. It is challenging to devise optimum operating conditions with efficient but safe working range for such a complex configuration. Numerical study known to be very effective is taken up for investigation. In the present study a 3D RANS code with turbulence model has been used to compute the flow fields and to get the heat transfer characteristics to understand certain design parameters of engineering importance. The angle of injection and of the coolant liquid has a large effect on the heat transfer within the reactor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of future climate change on the glaciers in the Karakoram and Himalaya (KH) is investigated using CMIP5 multi-model temperature and precipitation projections, and a relationship between glacial accumulation-area ratio and mass balance developed for the region based on the last 30 to 40 years of observational data. We estimate that the current glacial mass balance (year 2000) for the entire KH region is -6.6 +/- 1 Gta(-1), which decreases about sixfold to -35 +/- 2 Gta(-1) by the 2080s under the high emission scenario of RCP8.5. However, under the low emission scenario of RCP2.6 the glacial mass loss only doubles to -12 +/- 2 Gta(-1) by the 2080s. We also find that 10.6 and 27 % of the glaciers could face `eventual disappearance' by the end of the century under RCP2.6 and RCP8.5 respectively, underscoring the threat to water resources under high emission scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We clarify important physics issues related to the recently established new mass limit for magnetized white dwarfs which is significantly super-Chandrasekhar. The issues include, justification of high magnetic field and the corresponding formation of stable white dwarfs, contribution of the magnetic field to the total density and pressure, flux freezing, variation of magnetic field and related currents therein. We also attempt to address the observational connection of such highly magnetized white dwarfs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Full solar spectrum absorbers are widely pursued for applications related to photocatalysis and photovoltaics. Here we report multivalent Cu-doped ZnO nanoparticles which exhibit full solar spectrum absorbance and high photoactivity. Metathesis-based, green-chemical approaches with synthesis yield of similar to 100% are used. Cu incorporation in ZnO results in an increase of average solar spectrum absorbance from a mere 0.4% to 34%. On the other hand, (Zn, Cu)0 composites result in materials with up to 64% average solar spectrum absorbance. Doped systems operate well under both visible and UV illumination. The nanomaterials prepared are characterized by using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, and X-ray photoelectron spectroscopy (XPS). Photocatalysts explored have particle sizes >= 50 nm. This is deliberately done in order to avoid the nanotoxic size regime of ZnO. Despite the large particle size and low specific surface area (<20 m(2).g(-1)), the best catalyst reported here compare favorably with recent reports on ZnO based systems. Using X-photoelectron spectroscopy and synthesis property correlations, we infer that the presence of multivalent Cu (most likely in the form of Cu1+delta) on ZnO surface is responsible for the observed photoactivity enhancement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider minimal models of gauge mediated supersymmetry breaking with an extra U(1) factor in addition to the Standard Model gauge group. A U(1) charged, Standard Model singlet is assumed to be present which allows for an additional NMSSM like coupling, lambda HuHdS. The U(1) is assumed to be flavour universal. Anomaly cancellation in the MSSM sector requires additional coloured degrees of freedom. The S field can get a large vacuum expectation value along with consistent electroweak symmetry breaking. It is shown that the lightest CP even Higgs boson can attain mass of the order of 125 GeV. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural characterization of electrodeposited boron was carried out by using transmission electron microscopy and Raman spectroscopy. Electron diffraction and phase contrast imaging were carried out by using transmission electron microscopy. Phase identification was done based on the analysis of electron diffraction patterns and the power spectrum calculated from the lattice images from thin regions of the sample. Raman spectroscopic examination was carried out to study the nature of bonding and the allotropic form of boron obtained after electrodeposition. The results obtained from transmission electron microscopy showed the presence of nanocrystallites embedded in an amorphous mass of boron. Raman microscopic studies showed that amorphous boron could be converted to its crystalline form at high temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scaling of pressure spectrum in zero-pressure-gradient turbulent boundary layers is discussed. Spatial DNS data of boundary layer at one time instant (Re-theta = 4500) are used for the analysis. It is observed that in the outer regions the pressure spectra tends towards the -7/3 law predicted by Kolmogorov's theory of small-scale turbulence. The slope in the pressure spectra varies from -1 close to the wall to a value close to -7/3 in the outer region. The streamwise velocity spectra also show a -5/3 trend in the outer region of the flow. The exercise carried out to study the amplitude modulation effect of the large scales on the smaller ones in the near-wall region reveals a strong modulation effect for the streamwise velocity, but not for the pressure fluctuations. The skewness of the pressure follows the same trend as the amplitude modulation coefficient, as is the case for the velocity. In the inner region, pressure spectra were seen to collapse better when normalized with the local Reynolds stress (-(u'v') over bar) than when scaled with the local turbulent kinetic energy (q(2) = (u'(2)) over bar + (v'(2)) over bar + (w'(2)) over bar)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltage Source Inverter (VSI) fed induction motors are widely used in variable speed applications. For inverters using fixed switching frequency PWM, the output harmonic spectra are located at a few discrete frequencies. The ac motordrives powered by these inverters cause acoustic noise. This paper proposes a new variable switching frequency pwm technique and compares its performance with constant switching frequency pwm technique. It is shown that the proposed technique leads to spread spectra of voltages and currents. Also this technique ensures that no lower order harmonics are present and the current THD is comparable to that of fixed switching frequency PWM and is even better for higher modulation indices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Segregating the dynamics of gate bias induced threshold voltage shift, and in particular, charge trapping in thin film transistors (TFTs) based on time constants provides insight into the different mechanisms underlying TFTs instability. In this Letter we develop a representation of the time constants and model the magnitude of charge trapped in the form of an equivalent density of created trap states. This representation is extracted from the Fourier spectrum of the dynamics of charge trapping. Using amorphous In-Ga-Zn-O TFTs as an example, the charge trapping was modeled within an energy range of Delta E-t approximate to 0.3 eV and with a density of state distribution as D-t(Et-j) = D-t0 exp(-Delta E-t/kT) with D-t0 = 5.02 x 10(11) cm(-2) eV(-1). Such a model is useful for developing simulation tools for circuit design. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the electronic properties of Germanane and analyze its importance as 2-D channel material in switching devices. Considering two types of morphologies, namely, chair and boat, we study the real band structure, the effective mass variation, and the complex band structure of unstrained Germanane by density-functional theory. The chair morphology turns out to be a more effective channel material for switching devices than the boat morphology. Furthermore, we study the effect of elastic strain, van der Waals force, and vertical electric field on these band structure properties. Due to its very low effective mass with relatively high-energy bandgap, in comparison with the other 2-D materials, Germanane appears to provide superior performance in switching device applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GX 301-2, a bright high-mass X-ray binary with an orbital period of 41.5 d, exhibits stable periodic orbital intensity modulations with a strong pre-periastron X-ray flare. Several models have been proposed to explain the accretion at different orbital phases, invoking accretion via stellar wind, equatorial disc, and accretion stream from the companion star. We present results from exhaustive orbital phase resolved spectroscopic measurements of GX 301-2 using data from the Gas Slit Camera onboard MAXI. Using spectroscopic analysis of the MAXI data with unprecedented orbital coverage for many orbits continuously, we have found a strong orbital dependence of the absorption column density and equivalent width of the iron emission line. A very large equivalent width of the iron line along with a small value of the column density in the orbital phase range 0.10-0.30 after the periastron passage indicates the presence of high density absorbing matter behind the neutron star in this orbital phase range. A low energy excess is also found in the spectrum at orbital phases around the pre-periastron X-ray flare. The orbital dependence of these parameters are then used to examine the various models about mode of accretion on to the neutron star in GX 301-2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the issue of stability of recently proposed significantly super-Chandrasekhar white dwarfs. We present stable solutions of magnetostatic equilibrium models for super-Chandrasekhar white dwarfs pertaining to various magnetic field profiles. This has been obtained by self-consistently including the effects of the magnetic pressure gradient and total magnetic density in a general relativistic framework. We estimate that the maximum stable mass of magnetized white dwarfs could be more than 3 solar mass. This is very useful to explain peculiar, overluminous type Ia supernovae which do not conform to the traditional Chandrasekhar mass-limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compute the one loop corrections to the CP-even Higgs mass matrix in the supersymmetric inverse seesaw model to single out the different cases where the radiative corrections from the neutrino sector could become important. It is found that there could be a significant enhancement in the Higgs mass even for Dirac neutrino masses of O(30) GeV if the left-handed sneutrino soft mass is comparable or larger than the right-handed neutrino mass. In the case where right-handed neutrino masses are significantly larger than the supersymmetry breaking scale, the corrections can utmost account to an upward shift of 3 GeV. For very heavy multi TeV sneutrinos, the corrections replicate the stop corrections at 1-loop. We further show that general gauge mediation with inverse seesaw model naturally accommodates a 125 GeV Higgs with TeV scale stops. (C) 2014 The Authors. Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the rates of relaxation of a particle in a harmonic well, subject to Levy noise characterized by its Levy index mu. Using the propagator for this Levy-Ornstein-Uhlenbeck process (LOUP), we show that the eigenvalue spectrum of the associated Fokker-Planck operator has the form (n + m mu)nu where nu is the force constant characterizing the well, and n, m is an element of N. If mu is irrational, the eigenvalues are all nondegenerate, but rational mu can lead to degeneracy. The maximum degeneracy is shown to be 2. The left eigenfunctions of the fractional Fokker-Planck operator are very simple while the right eigenfunctions may be obtained from the lowest eigenfunction by a combination of two different step-up operators. Further, we find that the acceptable eigenfunctions should have the asymptotic behavior vertical bar x vertical bar(-n1-n2 mu) as vertical bar x vertical bar -> infinity, with n(1) and n(2) being positive integers, though this condition alone is not enough to identify them uniquely. We also assert that the rates of relaxation of LOUP are determined by the eigenvalues of the associated fractional Fokker-Planck operator and do not depend on the initial state if the moments of the initial distribution are all finite. If the initial distribution has fat tails, for which the higher moments diverge, one can have nonspectral relaxation, as pointed out by Toenjes et al. Phys. Rev. Lett. 110, 150602 (2013)].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers cooperative spectrum sensing algorithms for Cognitive Radios which focus on reducing the number of samples to make a reliable detection. We propose algorithms based on decentralized sequential hypothesis testing in which the Cognitive Radios sequentially collect the observations, make local decisions and send them to the fusion center for further processing to make a final decision on spectrum usage. The reporting channel between the Cognitive Radios and the fusion center is assumed more realistically as a Multiple Access Channel (MAC) with receiver noise. Furthermore the communication for reporting is limited, thereby reducing the communication cost. We start with an algorithm where the fusion center uses an SPRT-like (Sequential Probability Ratio Test) procedure and theoretically analyze its performance. Asymptotically, its performance is close to the optimal centralized test without fusion center noise. We further modify this algorithm to improve its performance at practical operating points. Later we generalize these algorithms to handle uncertainties in SNR and fading. (C) 2014 Elsevier B.V. All rights reserved.