314 resultados para MAGNETIC-STRUCTURES
Resumo:
This article analyzes the effect of devising a new failure envelope by the combination of the most commonly used failure criteria for the composite laminates, on the design of composite structures. The failure criteria considered for the study are maximum stress and Tsai-Wu criteria. In addition to these popular phenomenological-based failure criteria, a micromechanics-based failure criterion called failure mechanism-based failure criterion is also considered. The failure envelopes obtained by these failure criteria are superimposed over one another and a new failure envelope is constructed based on the lowest absolute values of the strengths predicted by these failure criteria. Thus, the new failure envelope so obtained is named as most conservative failure envelope. A minimum weight design of composite laminates is performed using genetic algorithms. In addition to this, the effect of stacking sequence on the minimum weight of the laminate is also studied. Results are compared for the different failure envelopes and the conservative design is evaluated, with respect to the designs obtained by using only one failure criteria. The design approach is recommended for structures where composites are the key load-carrying members such as helicopter rotor blades.
Resumo:
Four new 5-aminoisophthalates of cobalt and nickel have been prepared employing hydro/solvothermal methods: [Co2(C8H5NO4)2(C4H4N2)(H2O)2]·3H2O (I), [Ni2(C8H5NO4)2(C4H4N2)(H2O)2]·3H2O (II), [Co2(H2O)(μ3-OH)2(C8H5NO4)] (III), and [Ni2(H2O)(μ3-OH)2(C8H5NO4)] (IV). Compounds I and II are isostructural, having anion-deficient CdCl2 related layers bridged by a pyrazine ligand, giving rise to a bilayer arrangement. Compounds III and IV have one-dimensional M−O(H)−M chains connected by the 5-aminoisophthalate units forming a three-dimensional structure. The coordinated as well as the lattice water molecules of I and II could be removed and inserted by simple heating−cooling cycles under the atmospheric conditions. The removal of the coordinated water molecule is accompanied by changes in the coordination environment around the M2+ (M = Co, Ni) and color of the samples (purple to blue, Co; green to dark yellow, Ni). This change has been examined by a variety of techniques that include in situ single crystal to single crystal transformation studies and in situ IR and UV−vis spectroscopic studies. Magnetic studies indicate antiferromagnetic behavior in I and II, a field-induced magnetism in III, and a canted antiferromagnetic behavior in IV.
Resumo:
Anion directed, template syntheses of two dinuclear copper(II) complexes of mono-condensed Schiff base ligand Hdipn (4-[(3-aminopentylimino)-methyl]-benzene-1,3-diol) involving 2,4- dihydroxybenzaldehyde and 1,3-diaminopentane were realized in the presence of bridging azide and acetate anions. Both complexes, [Cu-2(dipn)(2)(N-3)(2)] (1) and [Cu-2(dip(n))(2)(OAc)(2)] (2) have been characterized by X-ray crystallography. The two mononuclear units are joined together by basal-apical, double end-on azido bridges in complex 1 and by basal-apical, double mono-atomic acetate oxygen-bridges in 2. Both complexes form rectangular grid-like supramolecular structures via H-bonds connecting the azide or acetate anion and the p-hydroxy group of 2,4- dihydroxybenzaldehyde. Variable-temperature (300-2 K) magnetic susceptibility measurements reveal that complex 1 has antiferromagnetic coupling (J = -2.10 cm (1)) through the azide bridge while 2 has intra-dimer ferromagnetic coupling through the acetate bridge and inter-dimer antiferromagnetic coupling through H-bonds (J = 2.85 cm (1), J' = -1.08 cm (1)). (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
Active regions on the solar surface are known to possess magnetic helicity, which is predominantly negative in the northern hemisphere and positive in the southern hemisphere. Choudhuri et al. [Choudhuri, A.R. On the connection between mean field dynamo theory and flux tubes. Solar Phys. 215, 31–55, 2003] proposed that the magnetic helicity arises due to the wrapping up of the poloidal field of the convection zone around rising flux tubes which form active regions. Choudhuri [Choudhuri, A.R., Chatterjee, P., Nandy, D. Helicity of solar active regions from a dynamo model. ApJ 615, L57–L60, 2004] used this idea to calculate magnetic helicity from their solar dynamo model. Apart from getting broad agreements with observational data, they also predict that the hemispheric helicity rule may be violated at the beginning of a solar cycle. Chatterjee et al. [Chatterjee, P., Choudhuri, A.R., Petrovay, K. Development of twist in an emerging magnetic flux tube by poloidal field accretion. A&A 449, 781–789, 2006] study the penetration of the wrapped poloidal field into the rising flux tube due to turbulent diffusion using a simple 1-d model. They find that the extent of penetration of the wrapped field will depend on how weak the magnetic field inside the rising flux tube becomes before its emergence. They conclude that more detailed observational data will throw light on the physical conditions of flux tubes just before their emergence to the photosphere.
Resumo:
Gabapentin, a widely used antiepileptic drug, crystallizes in multiple polymorphic forms. A new crystal form of gabapentin monohydrate in the space group Pbca is reported and the packing arrangement compared with that of a previously reported polymorph in the space group P2(1)/c [Ibers, J.A. (2001) Acta Crystallogr; C57:641]. Gabapentin polymorphs can also occur from a selection of one of the two distinct chair forms of the 1,1-disubstituted cyclohexane. Crystal structures of the E and Z isomers of 4-tert-butylgabapentin provide models for analyzing anticipated packing modes in the conformational isomers of gabapentin. The E isomer crystallized in the space group Pca2(1), while the Z isomer crystallized in the space group P2(1)/c. The crystal structure of E-4-tert-butylgabapentin provides the only example of a structure in a non-centrosymmetric space group. Crystal structures of the hydrochloride and hydrobromide salts of 4-tert-butyl derivatives are reported. The results suggest that for gabapentin, a large 'polymorph-space' may be anticipated, in view of the multiple conformational states that are accessible to the molecule.
Resumo:
The crystal structures of two oligopeptides containing di-n-propylglycine (Dpg) residues, Boc-Gly-Dpg-Gly-Leu-OMe (1) and Boc-Val-Ala-Leu-Dpg-Val-Ala-Leu-Val-Ala-Leu-Dpg-Val-Ala-Leu-OMe (2) are presented. Peptide 1 adopts a type I-turn conformation with Dpg(2)-Gly(3) at the corner positions. The 14-residue peptide 2 crystallizes with two molecules in the asymmetric unit, both of which adopt -helical conformations stabilized by 11 successive 5 1 hydrogen bonds. In addition, a single 4 1 hydrogen bond is also observed at the N-terminus. All five Dpg residues adopt backbone torsion angles (, ) in the helical region of conformational space. Evaluation of the available structural data on Dpg peptides confirm the correlation between backbone bond angle NCC() and the observed backbone , values. For > 106° , helices are observed, while fully extended structures are characterized by < 106° . The mean values for extended and folded conformations for the Dpg residue are 103.6° ± 1.7° and 109.9° ± 2.6° , respectively.
Resumo:
We have synthesized FINEMET type amorphous Fe73.5Cu1Mo3Si13.5-xAlxB9 alloy by the single wheel melt spinning technique. The effect of Al substitution on the magnetic properties has been studied using a vibrating sample magnetometer, SQUID and Mossbauer spectroscopy. Magnetization and Curie temperature of the amorphous phase of the alloys were found to decrease with A] concentration. The results are attributed to the dilution effect of At on the magnetic moment of Fe and to the increase in Fe-Fe interaction distance resulting in the weakening of exchange interaction. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Examples of 3D cadmium thiosulfate based inorganic-organic hybrid compounds have been shown to be active photocatalysts using sunlight.
Resumo:
The complexes, cis-(CO)-trans-(Cl)-[Ru(SRaaiNR)(CO)(2)Cl-2] (2) and trans-(Cl)-[Ru(SRaaiNR)(CO)Cl-2] (3) (SRaaiNR = 1-alkyl-2-{(o-thioalkyl)phenylazo}imidazoles; R = Me (1a) and Et (1b)) have been synthesized and characterized. The structural confirmation is achieved by single crystal X-ray structure determinations. The complexes show Ru(III)/Ru(II) couple and ligand reductions. Electronic structure and spectral properties of the complexes have been explained with the DFT and TDDFT calculation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In1-xMnxSb films have been grown with different Mn doping concentrations (x = 0.0085, 0.018, 0.029 and 0.04) beyond the equilibrium 14 solubility limit by liquid phase epitaxy. We have studied temperature dependent resistivity, the Hall effect, magnetoresistance and magnetization for all compositions. Saturation in magnetization observed even at room temperature suggests the existence of ferromagnetic clusters in the film which has been verified by scanning electron microscopy studies. The anomalous Hall coefficient is found to be negative. Remnant field present on the surface of the clusters seems to affect the anomalous Hall effect at very low fields (below 350 Gauss). In the zero field resistivity, a variable-range hopping conduction mechanism dominates below 3.5 K for all samples above which activated behavior is predominant. The temperature dependence of the magnetization measurement shows a magnetic ordering below 10 K which is consistent with electrical measurements. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The dispersion and impedance characteristics of an inverted slot-mode (ISM) slow-wave structure computed by three different techniques, i.e., an analytical model based on a periodic quasi-TEM approach, an equivalent-circuit model, and 3-D electromagnetic simulation are obtained and compared. The comparison was carried out for three different slot-mode structures at S-, C-, and X-bands. The approach was also validated with experimental measurements on a practical X-band ISM traveling-wave tube. The design of ferruleless ISM slow-wave structures, both in circular and rectangular formats, has also been proposed and the predicted dispersion characteristics for these two geometries are compared with 3-D simulation and cold-test measurements. The impedance characteristics for all three designs are also compared.
Resumo:
Ion pairs contribute to several functions including the activity of catalytic triads, fusion of viral membranes, stability in thermophilic proteins and solvent-protein interactions. Furthermore, they have the ability to affect the stability of protein structures and are also a part of the forces that act to hold monomers together. This paper deals with the possible ion pair combinations and networks in 25% and 90% non-redundant protein chains. Different types of ion pairs present in various secondary structural elements are analysed. The ion pairs existing between different subunits of multisubunit protein structures are also computed and the results of various analyses are presented in detail. The protein structures used in the analysis are solved using X-ray crystallography, whose resolution is better than or equal to 1.5 angstrom and R-factor better than or equal to 20%. This study can, therefore, be useful for analyses of many protein functions. It also provides insights into the better understanding of the architecture of protein structure.
Resumo:
The local Fe ferromagnetic (FM) moment at the grain boundaries of a ceramic sample of Ca2FeReO6 double perovskite was investigated by means of x-ray magnetic circular dichroism spectroscopy at the Fe L-2,L-3 edges and compared to the overall bulk magnetization. We found that, at the grain boundaries, the Fe FM moments at H=5 T are much smaller than expected and that the MxH curve is harder than in the bulk magnetization. These results suggest a larger degree of Fe/Re antisite disorder at the grain boundaries of this sample, shedding light into the intriguing nonmetallic resistivity behavior despite the reported presence of free carriers. (c) 2007 American Institute of Physics.
Resumo:
Electron paramagnetic resonance (EPR) studies and magnetic measurements were carried out on single crystals of multiferroic DyMnO3 in hexagonal as well as orthorhombic structures. The interesting effect of strontium dilution on the frustrated antiferromagnetism of DyMnO3 is also probed using EPR. The line shapes are fitted to broad Lorentzian in the case of pure DyMnO3 and to modified Dysonian in the case of Dy0.5Sr0.5MnO3. The linewidth, integrated intensity, and geff derived from the signals are analyzed as a function of temperature. The results of magnetization measurements corroborate with EPR results. Our study clearly reveals the signature of frustrated magnetism in pure DyMnO3 systems. It is found that antiferromagnetic correlations in these systems persist even above the transition. Moreover, a spin-glass-like behavior in Dy0.5Sr0.5MnO3 is indicated by a steplike feature in the EPR signals at low fields.
Resumo:
In a three player quantum `Dilemma' game each player takes independent decisions to maximize his/her individual gain. The optimal strategy in the quantum version of this game has a higher payoff compared to its classical counterpart. However, this advantage is lost if the initial qubits provided to the players are from a noisy source. We have experimentally implemented the three player quantum version of the `Dilemma' game as described by Johnson, [N.F. Johnson, Phys. Rev. A 63 (2001) 020302(R)] using nuclear magnetic resonance quantum information processor and have experimentally verified that the payoff of the quantum game for various levels of corruption matches the theoretical payoff. (c) 2007 Elsevier Inc. All rights reserved.