251 resultados para Employees Effect of technological innovations on
Resumo:
The objective of the present work is to study the effect of electrical process Parameters (duty cycle and frequency) on morphological, structural, and in-vitro corrosion characteristics of oxide films formed on zirconium by plasma electrolytic oxidation in an electrolyte system consisting of 5 g/L of trisodium orthophosphate. The oxide films fabricated on zirconium by systematically varying the duty cycle and frequency are characterized for its phase composition, surface morphology, chemical composition, roughness, wettability, surface energy, scratch resistance, corrosion resistance, apatite forming ability and osteoblast cell adhesion. X-ray diffraction pattern of all the oxide films showed the predominance of m-ZrO2 phase. Dense and uniform films with thickness varying from 9 to 15 mu m and roughness in the range of 0.62 to 1.03 mu m are formed. Porosity of oxide films is found to be increased with an increase infrequency. The water contact angle results demonstrated that the oxide films exhibited similar hydrophilicity to zirconium substrate. All oxide films showed improved corrosion resistance, as indicated by far lower corrosion current density and passive corrosion potential compared to the zirconium substrate in simulated body fluid environment, and among the four different combinations of duty cycle and frequency employed in the present study, the oxide film formed at 95% duty cycle and 50 Hz frequency (HDLF film) showed superior pitting corrosion resistance, which can be attributed to its pore free morpholOgy. Scratch test results showed that the HDLF oxide film adhered firmly to the substrate by developing a notable scratch resistance at 19.5 +/- 1.2.N. Besides the best corrosion resistance and scratch retistance, the HDLF film also showed good apatite forming ability and osteo sarcoma cell adhesion on its surface. The HDLF oxide film on zirconium with superior surface characteristics is believed to be useful for various types of implants in the dental and orthopedic fields. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Ionic polymer metal composites (IPMC) actuator for flapping insect scale wing is advantageous due to its low mass, high deflection and simple actuation mechanism. Some of the factors that affect the actuation of IPMC are the amount of hydration in the polymer membrane and the environmental conditions such as temperature, humidity etc. In structural design, the attachment of wing on the IPMC actuators is an important concern as the attached wing increases the mass of actuators thereby affecting the parameters like displacement, stiffness and resonant frequencies. Such IPMC actuators have to produce sufficient actuation force and frequency to lift and flap the attached wing. Therefore, it is relevant to study the influence of attachment of wing on the actuator parameters (displacement, resonant frequency, block force and stiffness) and performance of the actuators. This paper is divided into two parts; the first part deals with the modeling of the IPMC actuators for its effect on the level of water uptake and temperature using energy based method. The modeling method adapted is validated with the experimental procedure used to actuate the IPMC. The second part deals with the experimental analysis of IPMC actuation at dry, wet and in water conditions. The effect of end mass loading on the performance of 20 Hz, high frequency actuator (HFA) and 8.7 Hz, low frequency IPMC actuators (LFA) and sensors is studied. The IPMC actuators are attached with IPMC flapping wing at its free end and performance analysis on the attached wing is also carried out.
Resumo:
The evolution of microstructure and phase formation in equiatomic Ti20Fe20Ni20Co20Cu20 high entropy alloy synthesised by conventional arc melting followed with suction casting and ball milling with spark plasma sintering route is distinctly different. The cast microstructure exhibits one body centre cubic and two face centre cubic high entropy phases based on titanium, cobalt and copper respectively along with a eutectic containing Ti2Ni type Laves phase. On the contrary, spinodal decomposed microstructure consisting of cobalt and copper solid solution is obtained in the sintered sample. However, long term annealing of cast sample at 950 degrees C reveals a eutectoid transformation with different phases than the cast sample. The aforementioned observations are discussed using CALPHAD thermodynamical approach and available literature.
Resumo:
Iodothyronine deiodinases are selenoenzymes which regulate the thyroid hormone homeostasis by catalyzing the regioselective deiodination of thyroxine (T4). Synthetic deiodinase mimetics are important not only to understand the mechanism of enzyme catalysis, but also to develop therapeutic agents as abnormal thyroid hormone levels have implications in different diseases, such as hypoxia, myocardial infarction, critical illness, neuronal ischemia, tissue injury, and cancer. Described herein is that the replacement of sulfur/selenium atoms in a series of deiodinase mimetics by tellurium remarkably alters the reactivity as well as regioselectivity toward T4. The tellurium compounds reported in this paper represent the first examples of deiodinase mimetics which mediate sequential deiodination of T4 to produce all the hormone derivatives including T0 under physiologically relevant conditions.
Resumo:
In this work, the role of optical wavelength on the photo induced strain in carbon nanotubes (CNT) is probed using a Fiber Bragg Grating (FBG), upon exposure to infrared (IR) (21 mu epsilon mW(-1)) and visible (9 mu epsilon mW(-1)) radiations. The strain sensitivity in CNT is monitored over a smaller range (10(-3) to 10(-9) epsilon) by exposing to a low optical power varying in the range 10(-3) to 10(-6) W. In addition, the wavelength dependent response and recovery periods of CNT under IR (tau(rise) = 150 ms, tau(fall) = 280 ms) and visible (tau(rise) = 1.07 s, tau(fall) = 1.18 s) radiations are evaluated in detail. This study can be further extended to measure the sensitivity of nano-scale photo induced strains in nano materials and opens avenues to control mechanical actuation using various optical wavelengths.
Resumo:
We studied the effect of Fe doping on structural, magnetic, and dielectric properties of hexagonal ErMnO3 system. For 50% doping of Fe on Mn site in ErMnO3 modulated its crystallographic structure from hexagonal to orthorhombic phase. Accompanied with the structural phase transition in ErMnO3, the magnetic properties are effectively modified. The Fe doped samples exhibit enhancement in antiferromagnetic ordering Neel temperature (T-N) from 77K (ErMnO3) to 280K (ErFe0.5Mn0.5O3). The anomalies observed in the dielectric constant around T-N in doped ErMnO3 samples indicate the coupling between electric and magnetic order parameters. (C) 2015 AIP Publishing LLC.
Resumo:
Streamwise streaks, their lift-up and streak instability are integral to the bypass transition process. An experimental study has been carried out to find the effect of a mesh placed normal to the flow and at different wall-normal locations in the late stages of two transitional flows induced by free-stream turbulence (FST) and an isolated roughness element. The mesh causes an approximately 30% reduction in the free-stream velocity, and mild acceleration, irrespective of its wall-normal location. Interestingly, when located near the wall, the mesh suppresses several transitional events leading to transition delay over a large downstream distance. The transition delay is found to be mainly caused by suppression of the lift-up of the high-shear layer and its distortion, along with modification of the spanwise streaky structure to an orderly one. However, with the mesh well away from the wall, the lifted-up shear layer remains largely unaffected, and the downstream boundary layer velocity profile develops an overshoot which is found to follow a plane mixing layer type profile up to the free stream. Reynolds stresses, and the size and strength of vortices increase in this mixing layer region. This high-intensity disturbance can possibly enhance transition of the accelerated flow far downstream, although a reduction in streamwise turbulence intensity occurs over a short distance downstream of the mesh. However, the shape of the large-scale streamwise structure in the wall-normal plane is found to be more or less the same as that without the mesh.
Resumo:
The exposure with band gap light of thermally evaporated As40Sb15Se45 amorphous film of 800 nm thickness, were found to be accompanied by optical changes. The as-prepared and illuminated thin films were studied by X-ray diffraction, Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy and Raman spectroscopy. The optical band gap was reduced due to photo induced effects along with the increase in disorder. These optical properties changes are due to the change of homopolar bond densities. The core level peak shifting in XPS spectra and Raman shift supports the optical changes happening in the film due to light exposure.
Resumo:
We perform two and three dimensional numerical simulations of plume formation in density and viscosity stratified fluid systems. We show that the ambient to plume fluid viscosity ratio strongly affects the near wall plume structures (line or sheet plumes) such as plume spacing and shape of plumes. We observe that where mushroom-like plumes are observed for lower viscosity ratios, taller plumes with bulbous heads form for high viscosity ratios. Plume structure and spacing are in good agreement with experimental results. By studying the geometry of the line plumes and the flow in the circulation cells, we discuss the mechanisms of their formation and the dynamics of merging. We show that an increase in the viscosity ratio decreases the total length of line plumes in the planform which indicates a decreased mixing at higher viscosity ratios. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
This study concerns the relationship between the power law recession coefficient k (in - dQ/dt = kQ(alpha), Q being discharge at the basin outlet) and past average discharge Q(N) (where N is the temporal distance from the center of the selected time span in the past to the recession peak), which serves as a proxy for past storage state of the basin. The strength of the k-Q(N) relationship is characterized by the coefficient of determination R-N(2), which is expected to indicate the basin's ability to hold water for N days. The main objective of this study is to examine how R-N(2) value of a basin is related with its physical characteristics. For this purpose, we use streamflow data from 358 basins in the United States and selected 18 physical parameters for each basin. First, we transform the physical parameters into mutually independent principal components. Then we employ multiple linear regression method to construct a model of R-N(2) in terms of the principal components. Furthermore, we employ step-wise multiple linear regression method to identify the dominant catchment characteristics that influence R-N(2) and their directions of influence. Our results indicate that R-N(2) is appreciably related to catchment characteristics. Particularly, it is noteworthy that the coefficient of determination of the relationship between R-N(2) and the catchment characteristics is 0.643 for N = 45. We found that topographical characteristics of a basin are the most dominant factors in controlling the value of R-N(2). Our results may be suggesting that it is possible to tell about the water holding capacity of a basin by just knowing about a few of its physical characteristics. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Secondary atomization characteristics of burning bicomponent (ethanol-water) droplets containing titania nanoparticles (NPs) in dilute (0.5% and 1 wt.%) and dense concentrations (5% and 7.5 wt.%) are studied experimentally at atmospheric pressure under normal gravity. It is observed that both types of nanofuel droplets undergo distinct modes of secondary breakup, which are primarily responsible for transporting particles from the droplet domain to the flame zone. For dilute nanosuspensions, disruptive response is characterized by low intensity atomization modes that cause small-scale localized flame distortion. In contrast, the disruption behavior at dense concentrations is governed by high intensity bubble ejections, which result in severe disruption of the flame envelope.
Resumo:
We have employed the highly sensitive electron magnetic resonance technique complimented by magnetization measurements to study the impact of size reduction on the magnetic ordering in nanosized Sm1-x Ca (x) MnO3 (x = 0.35, 0.65 and 0.92). In the bulk form, x = 0.35 sample shows a charge ordering transition at 235 K followed by a mixed magnetic phase, the sample with x = 0.65 exhibits charge order below 275 K and shows an antiferromagnetic insulator phase below 135 K while that with x = 0.92 has a ferromagnetic-cluster glass ground state. Thus, a comparative study of magnetic ground states of bulk and nanoparticles (diameter similar to 25 nm) enables us to investigate size-induced effects on different types of magnetic ordering. It is seen that in the bulk samples the temperature dependences of the EPR parameters are quite different from each other. This difference diminishes for the nanosamples where all the three samples show qualitatively similar behavior. The magnetization measurements corroborate this conclusion.
Resumo:
Nickel selenide (NiSe) nanostructures possessing different morphologies of wires, spheres and hexagons are synthesized by varying the selenium precursors, selenourea, selenium dioxide (SeO2) and potassium selenocyanate (KSeCN), respectively, and are characterized using X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy and scanning electron microscopy techniques. Electrical measurements of a single nanowire and a hexagon carried out on devices fabricated by the focused ion beam (FIB) technique depict the semiconducting nature of NiSe and its ability to act as a visible light photodetector. The three different morphologies are used as catalysts for hydrogen evolution (HER), oxygen reduction (ORR) and glucose oxidation reactions. The wire morphology is found to be better than that of spheres and hexagons for all the reactions. Among the reactions studied, NiSe is found to be good for HER and glucose oxidation while ORR seems to terminate at the peroxide stage.
Resumo:
The present work investigates the mixed convective flow and heat transfer characteristics past a triangular cylinder placed symmetrically in a vertical channel. At a representative Reynolds number, Re = 100, simulations are carried out for the blockage ratios beta = 1/3; 1/4; and 1/6. Effect of aiding and opposing buoyancy is brought about by varying the Richardson number in the range -1.0 <= Ri <= 1.0. At a blockage ratio of 1/3, suppression of vortex shedding is found at Ri = 1, whereas von Karman vortex street is seen both at beta = 1/4 and 1/6, respectively. This is the first time that such behavior of blockage ratio past a triangular cylinder in the present flow configuration is reported. Drag coefficient increases progressively with increasing Ri and a slightly higher value is noticed at beta = 1/3. For all b, heat transfer increases with increasing Ri. Flattening of Nu(avg)-Ri curve beyond Ri > 0: 75 is observed at beta = 1/3.
Resumo:
The change in photo-induced optical properties in thermally evaporated Ge12Sb25Se63 chalcogenide thin film under 532-nm laser illumination has been reported in this paper. The structure and composition of the film have been examined by X-ray diffraction and energy dispersive X-ray analysis, respectively. The optical properties such as refractive index, extinction coefficient and thickness of the films have been determined from the transmission spectra based on inverse synthesis method and the optical band gap has been derived from optical absorption spectra using the Tauc plot. It has been found that the mechanism of the optical absorption is due to allowed indirect transition. The optical band gap increases by 0.05 eV causing photo-bleaching mechanism, while refractive index decreases because of reduction in structural disordering. Deconvolution of Raman and X-ray photoelectron spectra into several peaks provides different structural units, which supports the optical photo-bleaching.