407 resultados para Electrical transport
Resumo:
Current-voltage (I–U) characteristics of MOS structures on polycrystalline silicon are investigated. A model based on the carrier transport through the traps in the oxide is described to explain the I–U characteristics.Es werden Strom-Spannungs(I–U)-Charakteristiken von MOS-Strukturen auf polykristallinem Silizium untersucht. Ein Modell zur Erklärung der I–U-Charakteristiken wird beschrieben, das auf dem Ladungstransport über Oxidtraps beruht.
Resumo:
High-precision measurement of the electrical resistance of nickel along its critical line, a first attempt of this kind, as a function of pressure to 47.5 kbar is reported. Our analysis yields the values of the critical exponents α=α’=-0.115±0.005 and the amplitude ratios ‖A/A’‖=1.17±0.07 and ‖D/D’‖=1.2±0.1. These values are in close agreement with those predicted by renormalization-group (RG) theory. Moreover, this investigation provides an unambiguous experimental verification to one of the key consequences of RG theory that the critical exponents and amplitudes ratios are insensitive to pressure variation in nickel, a Heisenberg ferromagnet.
Resumo:
Electrical and magnetic properties of several oxide systems of K2NiF4 structure have been compared to those of the corresponding perovskites. Members of the La1−xSr1+xCoO4 system are all semiconductors with a high activation energy for conduction unlike La1−xSrxCoO3 (x ≥ 0.3) which is metallic; the latter oxides are ferromagnetic. La0.5Sr1.5CoO4 shows a magnetization of 0.5 μB at 0 K (compared to 1.5 μB of La0.5Sr0.5CoO3), but the high-temperature susceptibilities of the two systems are comparable. In SrO · (La0.5Sr0.5MnO3)n, both magnetization and electrical conductivity increase with the increase in n approaching the value of the perovskite La0.5Sr0.5MnO3. LaSrMn0.5Ni0.5(Co0.5)O4 shows no evidence of long-range ferromagnetic ordering unlike the perovskite LaMn0.5Ni0.5(Co0.5)O3; high-temperature susceptibility behavior of these two insulating systems is, however, similar. LaSr1−xBaxNiO4 exhibits high electrical resistivity with the resistivity increasing proportionately with the magnetic susceptibility (note that LaNiO3 is a Pauli-paramagnetic metal). High-temperature susceptibility of LaSrNiO4 and LaNiO3 are comparable. Susceptibility measurements show no evidence for long-range ordering in LaSrFe1−xNixO4 unlike in LaFe1−xNixO3 (x ≤ 0.35) and the electrical resistivity of the former is considerably higher. Electrical resistivity of Sr2RuO4 is more than an order of magnitude higher than that of SrRuO3. Some generalizations of the properties of two- and three-dimensional oxide systems have emerged from these experimental observations.
Resumo:
This paper presents an analysis of the effects of ambients-temperature and light intensity on the V-l characteristics of bipolar transistors under electrical breakdown. The analysis is based on the transportation and storage of majority carriers in the base region. It is shown that this analysis can explain the observed shift in the V-l characteristics to lower voltages with increase in either temperature or light intensity.
Resumo:
Double perovskite oxides Sr2FeMoO6 have attracted a great interest for their peculiar magneto-transport properties, and, ill particular, for the large values of low-field magneto-resistance (MR) which remains elevated even at room temperature, thanks to their high Curie temperature (T-c > 400 K). These properties are strongly influenced by chemical cation disorder, that is by the relative arrangement of Fe and Mo on their sublattices: the regular alternation of Fe and Mo enhances the M R and saturation magnetization. On the contrary the disorder generally depresses the magnetization and worsen the MR response. In this work the X-ray absorption fine structure (XAFS) technique has been employed in order to probe the cation order from a local point of view. XAFS spectra were collected at the Fe and Mo K edges on Sr2FeMoO6 samples with different degree of long-range chemical order. The XAFS results prove that a high degree of short-range cation order is preserved, despite the different long-range order: the Fe-Mo correlations are always preferred over the Fe-Fe and Mo-Mo ones in the perfectly ordered as well as in highly disordered samples.
Resumo:
We report transport and magnetic properties of a different class of highly conducting polyaniline, doped with boron trihalides BX3 (X=F, Cl, and Br). In order to understand the transport mechanism we analyze the temperature dependence of resistivity of a large number of samples, made by pelletizing doped polyaniline powder and by doping films of polyaniline. We find that the charge transport in this class of conducting polyaniline is driven by the charging-energy limited transport of charge carriers, in contrast to the quasi-one-dimensional variable range hopping conduction prevalent in conventional proton-doped polyaniline samples. Magnetic susceptibility provides further insight into the unusually high intrinsic conductivity behavior.
Resumo:
The phenomena of nonlinear I-V behavior and electrical switching find extensive applications in power control, information storage, oscillators, etc. The study of I-V characteristics and switching parameters is necessary for the proper application of switching materials and devices. In the present work, a simple low-cost electrical switching analyzer has been developed for the measurement of the electrical characteristics of switching materials and devices. The system developed consists of a microcontroller-based excitation source and a high-speed data acquisition system. The design details of the excitation source, its interface with the high-speed data acquisition system and personal computer, and the details of the application software developed for automated measurements are described. Typical I-V characteristics and switching curves obtained with the system developed are also presented to illustrate the capability of the instrument developed.
Resumo:
Bulk As-Te-Tl glasses belonging to the As30Te70-xTlx (4 <= x <= 22) and As40Te60-xTlx (5 <= x <= 20) composition tie lines are studied for their I-V characteristics. Unlike other As-Te-III glasses such as As-Te-Al and As-Te-In, which exhibit threshold behavior, the present samples show memory switching. The composition dependence of switching voltages (V-t) of As-Te-Tl glasses is also different from that of As-Te-Al and As-Te-In glasses, and it is found that V-t decreases with the addition of Tl. Both the type of switching exhibited by As-Te-Tl glasses and the composition dependence of V-t, seems to be intimately connected with the nature of bonding of Tl atoms and the resultant structural network. Furthermore, the temperature and thickness dependence of switching voltages of As-Te-Tl glasses suggest an electro thermal mechanism for switching in these samples.
Resumo:
We offer a technique, motivated by feedback control and specifically sliding mode control, for the simulation of differential-algebraic equations (DAEs) that describe common engineering systems such as constrained multibody mechanical structures and electric networks. Our algorithm exploits the basic results from sliding mode control theory to establish a simulation environment that then requires only the most primitive of numerical solvers. We circumvent the most important requisite for the conventionalsimulation of DAEs: the calculation of a set of consistent initial conditions. Our algorithm, which relies on the enforcement and occurrence of sliding mode, will ensure that the algebraic equation is satisfied by the dynamic system even for inconsistent initial conditions and for all time thereafter. [DOI:10.1115/1.4001904]
Resumo:
A.C. electrical conductivity of potassium perchlorate (KP) has been measured in the temperature range 25�325°C at frequencies ranging from 50�500 Hz using an automated technique. The results are interpreted in terms of a novel mechanism involving Schottky defects in the anion sublattice and Frenkel defects in the cation sublattice. Theconductivity behavior of KP is compared with literature data on similar low-symmetry systems containing polyatomic ions.
Resumo:
Annealing dependence of the lattice parameter, resistivity, magnetoresistance and thermopower have been studied on Nd0.87Sr0.33MnO3 thin films deposited on LaAlO3 and alumina substrates by pulsed laser ablation. Upon annealing at 800 degrees C and 1000 degrees C the lattice constant of the LaAlO3 film tends toward that of the bulk target due to reduction in oxygen vacancies. This results in a metal-insulator transition at temperatures which increase with progressive annealing along with a decrease in the observed low temperature MR. Using a magnon scattering model we estimate the e(g) bandwidth of the film annealed at 1000 degrees C and show that the magnon contribution to the resistivity is suppressed in a highly oxygen deficient film and gains prominence only upon subsequent annealing. We also show that upon annealing, the polaron concentration and the spin cluster size increases in the paramagnetic phase, using an adiabatic polaron hopping model which takes into account an exchange dependent activation energy above the resistivity peak.
Resumo:
The behavior of electrical resistivity in the critical region of three polar + nonpolar binary liquid systems CS2 +(CH3CO)2O, C6H12+(CH3CO)2O, and n‐C7H16+(CH3CO)2O is studied. For the mixtures with critical composition, the two phase region shows a conductivity behavior with σ1−σ2∼ (−ϵ)β with β?0.35. In the one phase region dR/dT has a singularity ϵ−b with b?0.35. A possible theory of the impurity conduction is given, which broadly explains these results. The possibility of dR/dT being positive or negative is also discussed.