356 resultados para Transport, Sugarcane, Braking, Anti-Lock, Locomotive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The numerical solutions of Boltzmann transpott equation for the energy distribution of electrons moving in crossed fields in nitrogen have been obtained for 100 ÿ E/p ÿ 1000 V M-1 Torr-1 and for 0ÿ B/p ÿ 0.02 Tesla Torr-1 using the concept of energy dependent effective field intensity. From the derived distribution functions the electron mean energy, the tranaverse and perpendicular drift velocities and the averaged effective field intensity (Eavef) which signifies the average field intensity experienced by electron swarms in E àB field have been derived. The maximum difference between the electron mean energy for a given E ÃÂB field and that corresponding to Eavef/p (p is the gas pressure) is found to be within ñ3.5%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethnopharmacological relevance: Traditional remedies used for treating diabetic ailments are very important in the primary health care of the people living in rural Dhemaji district of Assam, north-east India. Novel information gathered from the current survey is important in preserving folk indigenous knowledge. Materials and methods: Interviews were conducted amongst 80 households comprising of 240 individuals using semi-structured questionnaires. The focus was on plants used in treating diabetes mellitus. Results: The current survey documented 21 plant species (20 families) which are reportedly used to treat diabetes mellitus by the rural people in the study area. To the best of our knowledge, Amomum linguiforme, Cinnamomum impressinervium, Colocasia esculenta, Dillenia indica, Euphorbia ligularia, Garcinia pedunculata, Solanum indicum, Sterculia villosa and Tabernaemontana divaricata are recorded for the first time based on globally published literature as medicinal plants used for treating diabetes mellitus and related symptoms. Conclusions: The wide variety of plants that are used to treat diabetes mellitus in this area supports the traditional value that medicinal plants have in the primary health care system of the rural people of Dhemaji district of Assam. The finding of new plant uses in the current study reveals the importance of the documentation of such ethnobotanical knowledge. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arteries are heterogeneous, composite structures that undergo large cyclic deformations during blood transport. Presence, build-up and consequent rupture of blockages in blood vessels, called atherosclerotic plaques, lead to disruption in the blood flow that can eventually be fatal. Abnormal lipid profile and hypertension are the main risk factors for plaque progression. Treatments span from pharmacological methods, to minimally invasive balloon angioplasty and stent procedures, and finally to surgical alternatives. There is a need to understand arterial disease progression and devise methods to detect, control, treat and manage arterial disease through early intervention. Local delivery through drug eluting stents also provide an attractive option for maintaining vessel integrity and restoring blood flow while releasing controlled amount of drug to reduce and alleviate symptoms. Development of drug eluting stents is hence interesting albeit challenging because it requires an integration of knowledge of mechanical properties with material transport of drug through the arterial wall to produce a desired biochemical effect. Although experimental models are useful in studying such complex multivariate phenomena, numerical models of mass transport in the vessel have proved immensely useful to understand and delineate complex interactions between chemical species, physical parameters and biological variables. The goals of this review are to summarize literature based on studies of mass transport involving low density lipoproteins in the arterial wall. We also discuss numerical models of drug elution from stents in layered and porous arterial walls that provide a unique platform that can be exploited for the design of novel drug eluting stents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the electrical anisotropic transport properties of poly(methyl methacrylate) infiltrated aligned carbon nanotube mats. The anisotropy in the resistivity increases with decreasing temperature and the conduction mechanism in the parallel and perpendicular direction is different. Magnetoresistance (MR) studies also suggest anisotropic behavior of the infiltrated mats. Though MR is negative, an upturn is observed when the magnetic field is increased. This is due to the interplay of electron weak localization and electron-electron interactions mechanisms. Overall, infiltrated carbon nanotube mat is a good candidate for anisotropically conductive polymer composite and a simple fabrication method has been reported. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3675873]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work explores the electrical transport and infrared (IR) photoresponse properties of InN nanorods (NRs)/n-Si heterojunction grown by plasma-assisted molecular beam epitaxy. Single-crystalline wurtzite structure of InN NRs is verified by the X-ray diffraction and transmission electron microscopy. Raman measurements show that these wurtzite InN NRs have sharp peaks E(2)(high) at 490.2 cm(-1) and A(1)(LO) at 591 cm(-1). The current transport mechanism of the NRs is limited by three types of mechanisms depending on applied bias voltages. The electrical transport properties of the device were studied in the range of 80 to 450 K. The faster rise and decay time indicate that the InN NRs/n-Si heterojunction is highly sensitive to IR light.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium indicus pranii (MIP) is approved for use as an adjuvant (Immuvac/Cadi-05) in the treatment of leprosy. In addition, its efficacy is being investigated in clinical trials on patients with tuberculosis and different tumors. To evaluate and delineate the mechanisms by which autoclaved MIP enhances anti-tumor responses, the growth of solid tumors consisting of Sp2/0 (myeloma) and EL4 (thymoma) cells was studied in BALB/c and C57BL/6 mice, respectively. Treatment of mice with a single intra-dermal (i.d.) injection of MIP 3 days after Sp2/0 implantation greatly suppresses tumor growth. MIP treatment of tumor bearing mice lowers Interleukin (IL)6 but increases IL12p70 and IFN? amounts in sera. Also, increase in CD8+ T cell mediated lysis of specific tumor targets and production of high amounts of IL2 and IFN? by CD4+ T cells upon stimulation with specific tumor antigens in MIP treated mice is observed. Furthermore, MIP is also effective in reducing the growth of EL4 tumors; however, this efficacy is reduced in Ifn?-/- mice. In fact, several MIP mediated anti-tumor responses are greatly abrogated in Ifn?-/- mice: increase in serum Interleukin (IL)12p70 amounts, induction of IL2 and lysis of EL4 targets by splenocytes upon stimulation with specific tumor antigens. Interestingly, tumor-induced increase in serum IL12p70 and IFN? and reduction in growth of Sp2/0 and EL4 tumors by MIP are not observed in nonobese diabetic severe combined immunodeficiency mice. Overall, our study clearly demonstrates the importance of a functional immune network, in particular endogenous CD4+ and CD8+ T cells and IFN?, in mediating the anti-tumor responses by MIP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we investigate the effect of terminal substituents on the dynamics of spin and charge transport in donor-acceptor substituted polyenes [D-(CH)(x)-A] chains, also known as push-pull polyenes. We employ a long-range correlated model Hamiltonian for the D-(CH)(x)-A system, and time-dependent density matrix renormalization group technique for time propagating the wave packet obtained by injecting a hole at a terminal site, in the ground state of the system. Our studies reveal that the end groups do not affect spin and charge velocities in any significant way, but change the amount of charge transported. We have compared these push-pull systems with donor-acceptor substituted polymethine imine (PMI), D-(CHN)(x)-A, systems in which besides electron affinities, the nature of p(z) orbitals in conjugation also alternate from site to site. We note that spin and charge dynamics in the PMIs are very different from that observed in the case of push-pull polyenes, and within the time scale of our studies, transport of spin and charge leads to the formation of a ``quasi-static'' state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We briefly review the growth and structural properties of View the MathML source bulk single crystals and View the MathML source epitaxial films grown on semi-insulating GaAs substrates. Temperature-dependent transport measurements on these samples are then correlated with the information obtained from structural (XRD, TEM, SEM) and optical (FTIR absorption) investigations. The temperature dependence of mobility and the Hall coefficient are theoretically modelled by exactly solving the linearized Boltzmann transport equation by inversion of the collision matrix and the relative role of various scattering mechanisms in limiting the low temperature and View the MathML source mobility is estimated. Finally, the first observation of Shubnikov oscillations in InAsSb is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the jump in resistance at the melting transition, which is experimentally observed to be constant, independent of magnetic field (vortex density). We present an explanation of this effect based on vortex cuttings, and universalities of the structure factor at the freezing transition (the Hansen-Verlet criterion).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum dot lattices (QDLs) have the potential to allow for the tailoring of optical, magnetic, and electronic properties of a user-defined artificial solid. We use a dual gated device structure to controllably tune the potential landscape in a GaAs/AlGaAs two-dimensional electron gas, thereby enabling the formation of a periodic QDL. The current-voltage characteristics, I (V), follow a power law, as expected for a QDL. In addition, a systematic study of the scaling behavior of I (V) allows us to probe the effects of background disorder on transport through the QDL. Our results are particularly important for semiconductor-based QDL architectures which aim to probe collective phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

``Soggy sand'' electrolyte, which essentially consists of oxide dispersions in nonaqueous liquid salt solutions, comprises an important class of soft matter electrolytes. The ion transport mechanism of soggy sand electrolyte is complex. The configuration of particles in the liquid solution has been observed to depend in a nontrivial manner on various parameters related to the oxide (concentration, size, surface chemistry) and solvent (dielectric constant, viscosity) as well as time. The state of the particles in solution not only affects ionic conductivity but also effectively the mechanical and electrochemical properties of the solid liquid composite. Apart from comprehensive understanding of the underlying phenomena that govern ion transport, which will benefit design of better electrolytes, the problem has far-reaching implications in diverse fields such as catalysis, colloid chemistry, and biotechnology.