237 resultados para Métastables de Zn
Resumo:
The contact behavior of tin mono sulfide (SnS) nanocrystalline thin films with zinc (Zn) and silver (Ag) contacts was studied. SnS films have been deposited on glass substrates by thermal evaporation technique at a growth temperature of 300 degrees C. The as-grown SnS films composed of vertically aligned nanocrystallites with a preferential orientation along the < 010 > direction. SnS films exhibited excellent chemical stoichiometry and direct optical band gap of 1.96 eV. These films also exhibited excellent Ohmic characteristics and low electrical resistivity with Zn contacts. The observed electrical resistivity of SnS films with Zn contacts is 22 times lower than that of the resistivity with Ag contacts. The interfacing analysis reveals the formation of conductive Zn-S layer between SnS and Zn as interfacial layer. (C) 2014 Elsevier B. V. All rights reserved.
Resumo:
Full solar spectrum absorbers are widely pursued for applications related to photocatalysis and photovoltaics. Here we report multivalent Cu-doped ZnO nanoparticles which exhibit full solar spectrum absorbance and high photoactivity. Metathesis-based, green-chemical approaches with synthesis yield of similar to 100% are used. Cu incorporation in ZnO results in an increase of average solar spectrum absorbance from a mere 0.4% to 34%. On the other hand, (Zn, Cu)0 composites result in materials with up to 64% average solar spectrum absorbance. Doped systems operate well under both visible and UV illumination. The nanomaterials prepared are characterized by using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, and X-ray photoelectron spectroscopy (XPS). Photocatalysts explored have particle sizes >= 50 nm. This is deliberately done in order to avoid the nanotoxic size regime of ZnO. Despite the large particle size and low specific surface area (<20 m(2).g(-1)), the best catalyst reported here compare favorably with recent reports on ZnO based systems. Using X-photoelectron spectroscopy and synthesis property correlations, we infer that the presence of multivalent Cu (most likely in the form of Cu1+delta) on ZnO surface is responsible for the observed photoactivity enhancement.
Resumo:
Segregating the dynamics of gate bias induced threshold voltage shift, and in particular, charge trapping in thin film transistors (TFTs) based on time constants provides insight into the different mechanisms underlying TFTs instability. In this Letter we develop a representation of the time constants and model the magnitude of charge trapped in the form of an equivalent density of created trap states. This representation is extracted from the Fourier spectrum of the dynamics of charge trapping. Using amorphous In-Ga-Zn-O TFTs as an example, the charge trapping was modeled within an energy range of Delta E-t approximate to 0.3 eV and with a density of state distribution as D-t(Et-j) = D-t0 exp(-Delta E-t/kT) with D-t0 = 5.02 x 10(11) cm(-2) eV(-1). Such a model is useful for developing simulation tools for circuit design. (C) 2014 AIP Publishing LLC.
Resumo:
Transparent conducting ZnO films were prepared at substrate temperature 400 degrees C with different film thicknesses by nebulizer spray pyrolysis method on glass substrates. XRD studies reveal that the films are polycrystalline in nature having hexagonal crystal structure with preferred grain orientations along (0 0 2) and (1 0 1) directions. The crystallite size increases along (0 0 2) plane with the thickness increase and attains a maximum 109 nm for 913 nm film thickness. Analysis of structural parameters indicates that the films having thickness 913 nm are found to have minimum dislocation density and strain values. The HRSEM measurements show that the surface morphology of the films also changes with film thickness. EDAX estimates the average atomic percentage ratio of Zn and O in the ZnO films. Optical studies reveal the band gap energy decrease from 3.27 to 3.14 eV with increase of film thickness. Room temperature PL spectra show the near-band-edge emission and deep-level emission due to the presence of defects in the ZnO thin films. Impedance spectroscopy analysis indicates that grain boundary resistance decreases with the increasing ammonia concentration up to 500 ppm and the maximum sensitivity is found to be 1.7 for 500 ppm of ammonia. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Extended x-ray absorption fine-structure studies have been performed at the Zn K and Cd K edges for a series of solid solutions of wurtzite Zn1-xCdxS samples with x = 0.0, 0.1, 0.25, 0.5, 0.75, and 1.0, where the lattice parameter as a function of x evolves according to the well-known Vegard's law. In conjunction with extensive, large-scale first-principles electronic structure calculations with full geometry optimizations, these results establish that the percentage variation in the nearest-neighbor bond distances are lower by nearly an order of magnitude compared to what would be expected on the basis of lattice parameter variation, seriously undermining the chemical pressure concept. With experimental results that allow us to probe up to the third coordination shell distances, we provide a direct description of how the local structure, apparently inconsistent with the global structure, evolves very rapidly with interatomic distances to become consistent with it. We show that the basic features of this structural evolution with the composition can be visualized with nearly invariant Zn-S-4 and Cd-S-4 tetrahedral units retaining their structural integrity, while the tilts between these tetrahedral building blocks change with composition to conform to the changing lattice parameters according to the Vegard's law within a relatively short length scale. These results underline the limits of applicability of the chemical pressure concept that has been a favored tool of experimentalists to control physical properties of a large variety of condensed matter systems.
Resumo:
A new benzoyl hydrazone based chemosensor R is synthesized by Schiff base condensation of 2,6-diformyl-4-methylphenol and phenyl carbohydrazide and acts as a highly selective fluorescence sensor for Cu2+ and Zn2+ ions in aqueous media. The reaction of R with CuCl2 or ZnCl2 forms the corresponding dimeric dicopper(II) Cu-2(R)(CH3O)-(NO3)](2)(CH3O)(2) (R-Cu2+) and dizinc(1) Zn-2(R)(2)](NO3)(2) (R-Zn2+) complexes, which are characterized, as R, by conventional techniques including single-crystal X-ray analysis. Electronic absorption and fluorescence titration studies of R with different metal cations in a CH3CN/0.02 M HEPES buffer medium (pH = 7.3) show a highly selective binding affinity only toward Cu(2+)and Zn2+ ions even in the presence of other commonly coexisting ions such as Ne+, K+, Mg2+, Ca2+, Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cd2+, and Hg2+. Quantification of the fluorescence titration analysis shows that the chemosensor R can indicate the presence of Cu2+ and Zn2+ even at very low concentrations of 17.3 and 16.5 ppb, respectively. R-Zn2+ acts as a selective metal-based fluorescent sensor for inorganic pyrophosphate ion (PPi) even in the presence of other common anions such as F-, Cl-, Br-, I-, CH3COO-, CO32-, HCO3-, N-3(-), SO42-, PPi, AMP, ADP, and ATP in an aqueous medium. The propensity of R as a bioimaging fluorescent probe to detect Cu2+ and Zn2+ ions in human cervical HeLa cancer cell lines and their cytotoxicity against human cervical (HeLa), breast cancer (MCF7), and noncancer breast epithelial (MCF10a) cells have also been investigated. R-Cu2+ shows better cytotoxicity and sensitivity toward cancer cells over noncancer cells than R and R-Zn2+ under identical conditions, with the appearance of apoptotic bodies.
Resumo:
In the present work, morphology, microstructure, and electrochemical behavior of Zn coatings containing non-toxic additives have been investigated. Zn coatings were electrodeposited over mild steel substrates using Zn sulphate baths containing four different organic additives: sodium gluconate, dextrose, dextrin, and saccharin. All these additives are ``green'' and can be derived from food contents. Morphological and structural characterization using electron microscopy, x-ray diffraction, and texture co-efficient analysis revealed an appreciable alteration in the morphology and texture of the deposit depending on the type of additive used in the Zn plating bath. All the Zn coatings, however, were nano-crystalline irrespective of the type of additive used. Polarization and electrochemical impedance spectroscopic analysis, used to investigate the effect of the change in microstructure and morphology on corrosion resistance behavior, illustrated an improved corrosion resistance for Zn deposits obtained from plating bath containing additives as compared to the pure Zn coatings.
Resumo:
Two different soft-chemical, self-assembly-based solution approaches are employed to grow zinc oxide (ZnO) nanorods with controlled texture. The methods used involve seeding and growth on a substrate. Nanorods with various aspect ratios (1-5) and diameters (15-65 nm) are grown. Obtaining highly oriented rods is determined by the way the substrate is mounted within the chemical bath. Furthermore, a preheat and centrifugation step is essential for the optimization of the growth solution. In the best samples, we obtain ZnO nanorods that are almost entirely oriented in the (002) direction; this is desirable since electron mobility of ZnO is highest along this crystallographic axis. When used as the buffer layer of inverted organic photovoltaics (I-OPVs), these one-dimensional (1D) nanostructures offer: (a) direct paths for charge transport and (b) high interfacial area for electron collection. The morphological, structural, and optical properties of ZnO nanorods are studied using scanning electron microscopy, X-ray diffraction, and ultraviolet-visible light (UV-vis) absorption spectroscopy. Furthermore, the surface chemical features of ZnO films are studied using X-ray photoelectron spectroscopy and contact angle measurements. Using as-grown ZnO, inverted OPVs are fabricated and characterized. For improving device performance, the ZnO nanorods are subjected to UV-ozone irradiation. UV-ozone treated ZnO nanorods show: (i) improvement in optical transmission, (ii) increased wetting of active organic components, and (iii) increased concentration of Zn-O surface bonds. These observations correlate well with improved device performance. The devices fabricated using these optimized buffer layers have an efficiency of similar to 3.2% and a fill factor of 0.50; this is comparable to the best I-OPVs reported that use a P3HT-PCBM active layer.
Resumo:
The first organocatalytic asymmetric reaction of 3-isothiocyanatooxindoles with nitro olefins has been developed by using a cinchonidine-derived bifunctional catalyst. The resulting products, highly functionalized 3,2-pyrrolidinyl-substituted spirooxindole derivatives, were obtained in high yields with good diastereo- and enantioselectivities (up to dr >20:1 and er = 96:4). This Michael addition/cyclization cascade reaction employs monosubstituted nitro olefins and complements the Zn-II-catalyzed variant, which is only applicable to disubstituted nitro olefins.
Resumo:
Zinc oxide (ZnO) and silver doped zinc oxide (ZnO:Ag) nanoparticles were prepared using nitrates of zinc and silver as oxidizers and ethylene diaminetetraacetic acid (EDTA) as a fuel via low-temperature combustion synthesis (LCS) at 500 degrees C. X-ray diffraction (XRD) pattern indicates the presence of silver in the hexagonal wurtzite structure of ZnO. Fourier transform infrared (FTIR) spectrum indicates the presence of Ag-Zn-O stretching vibration at 510 cm(-1). Transmission electron microscopy (TEM) images shows that the average particle size of ZnO and ZnO:Ag nanoparticles were found to be 58 nm and 52 nm, respectively. X-ray photoelectron spectroscopy (XPS) data clearly indicates the presence of Ag in ZnO crystal lattice. The above characterization techniques indicate that the incorporation of silver affects the structural and optical properties of ZnO nanoparticles. ZnO:Ag nanoparticles exhibited 3% higher photocatalytic efficiency than pure ZnO nanoparticles. ZnO:Ag nanoparticles show better photocatalytic activity for the degradation of trypan blue (TrB) compared to undoped ZnO nanoparticles. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
As an alternative to the gold standard TiO2 photocatalyst, the use of zinc oxide (ZnO) as a robust candidate for wastewater treatment is widespread due to its similarity in charge carrier dynamics upon bandgap excitation and the generation of reactive oxygen species in aqueous suspensions with TiO2. However, the large bandgap of ZnO, the massive charge carrier recombination, and the photoinduced corrosion-dissolution at extreme pH conditions, together with the formation of inert Zn(OH)(2) during photocatalytic reactions act as barriers for its extensive applicability. To this end, research has been intensified to improve the performance of ZnO by tailoring its surface-bulk structure and by altering its photogenerated charge transfer pathways with an intention to inhibit the surface-bulk charge carrier recombination. For the first time, the several strategies, such as tailoring the intrinsic defects, surface modification with organic compounds, doping with foreign ions, noble metal deposition, heterostructuring with other semiconductors and modification with carbon nanostructures, which have been successfully employed to improve the photoactivity and stability of ZnO are critically reviewed. Such modifications enhance the charge separation and facilitate the generation of reactive oxygenated free radicals, and also the interaction with the pollutant molecules. The synthetic route to obtain hierarchical nanostructured morphologies and study their impact on the photocatalytic performance is explained by considering the morphological influence and the defect-rich chemistry of ZnO. Finally, the crystal facet engineering of polar and non-polar facets and their relevance in photocatalysis is outlined. It is with this intention that the present review directs the further design, tailoring and tuning of the physico-chemical and optoelectronic properties of ZnO for better applications, ranging from photocatalysis to photovoltaics.
Resumo:
Electronically nonadiabatic decomposition mechanisms of dimethylnitramine (DMNA) in presence of zinc metal clusters are explored. Complete active space self-consistent field (CASSCF) calculation is employed for DMNA-Zn and ONIOM (Our own N-layered integrated molecular orbital and molecular mechanics) methodology is coupled with CASSCF methodology for DMNA-Zn-10 cluster. Present computational results show that DMNA-Zn clusters undergo electronically nonadiabatic reactions, rendering nitro-nitrite isomerization followed by NO elimination. The overall reactions are also found to be highly exothermic in nature. This is the first report on electronically nonadiabatic decomposition pathways of DMNA-Zn-n neutral clusters. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We develop new techniques to efficiently evaluate heat kernel coefficients for the Laplacian in the short-time expansion on spheres and hyperboloids with conical singularities. We then apply these techniques to explicitly compute the logarithmic contribution to black hole entropy from an N = 4 vector multiplet about a Z(N) orbifold of the near-horizon geometry of quarter-BPS black holes in N = 4 supergravity. We find that this vanishes, matching perfectly with the prediction from the microstate counting. We also discuss possible generalisations of our heat kernel results to higher-spin fields over ZN orbifolds of higher-dimensional spheres and hyperboloids.
Resumo:
Al-doped ZnO thin films were synthesized from oxygen reactive co-sputtering of Al and Zn targets. Explicit doping of Al in the highly c-axis oriented crystalline films of ZnO was manifested in terms of structural optical and electrical properties. Electrical conduction with different extent of Al doping into the crystal lattice of ZnO (AZnO) were characterized by frequency dependent (40 Hz-50 MHz) resistance. From the frequency dependent resistance, the ac conduction of them, and correlations of localized charge particles in the crystalline films were studied. The dc conduction at the low frequency region was found to increase from 8.623 mu A to 1.14 mA for the samples AZnO1 (1 wt% Al) and AZnO2 (2 wt% Al), respectively. For the sample AZnO10 (10 wt% Al) low frequency dc conduction was not found due to the electrode polarization effect. The measure of the correlation length by inverse of threshold frequency (omega(0)) showed that on application of a dc electric field such length decreases and the decrease in correlation parameter(s) indicates that the correlation between potentials wells of charge particles decreases for the unidirectional nature of dc bias. The comparison between the correlation length and the extent of correlation in the doped ZnO could not be made due to the observation of several threshold frequencies at the extent of higher doping. Such threshold frequencies were explained by the population possibility of correlated charge carriers that responded at different frequencies. For AZnO2 (2% Al), the temperature dependent (from 4.5 to 288 K) resistance study showed that the variable range hopping mechanism was the most dominating conduction mechanism at higher temperature whereas at low temperature region it was influenced by the small polaronic hopping conduction mechanism. There was no significant influence found in these mechanisms on applications of 1, 2 and 3 V as biases.
Resumo:
The synthesis of the heterobinuclear copper-zinc complex CuZn(bz)(3)(bpy)(2)]ClO4 (bz = benzoate) from benzoic acid and bipyridine is described. Single crystal X-ray diffraction studies of the heterobinuclear complex reveals the geometry of the benzoato bridged Cu(II)-Zn(II) centre. The copper or zinc atom is pentacoordinate, with two oxygen atoms from bridging benzoato groups and two nitrogen atoms from one bipyridine forming an approximate plane and a bridging oxygen atom from a monodentate benzoate group. The Cu-Zn distance is 3.345 angstrom. The complex is normal paramagnetic having mu(eff) value equal to 1.75 BM, ruling out the possibility of Cu-Cu interaction in the structural unit. The ESR spectrum of the complex in CH3CN at RT exhibit an isotropic four line spectrum centred at g = 2.142 and hyperfine coupling constants A(av) = 63 x 10(-4) cm(-1), characteristic of a mononuclear square-pyramidal copper(II) complexes. At LNT, the complex shows an isotropic spectrum with g(parallel to) = 2.254 and g(perpendicular to) =2.071 and A(parallel to) = 160 x 10(-4) cm(-1). The Hamiltonian parameters are characteristic of distorted square pyramidal geometry. Cyclic voltammetric studies of the complex have indicated quasi-reversible behaviour in acetonitrile solution. (C) 2014 Elsevier B.V. All rights reserved.