234 resultados para Interactions sociales
Resumo:
The hexamethylenetetramine (HMT) framework displays interesting stereoelectronic interactions of the anomeric type. In the highly symmetrical parent system, the nitrogen centres act as both donors and acceptors. Protonation lowers symmetry and also leads to an enhancement of the anomeric interaction around the protonated centre. X-ray diffraction crystal structures of four derivatives of HMT - with succinic, (DL)-malic, phthalic and 4-hydroxybenzoic acids - reveal significant trends. (The first three form well-defined salts, 4-hydroxybenzoic acid forming a co-crystalline compound.) Each molecular structure is essentially characterised by a major anomeric interaction involving the protonated centre as acceptor. In two cases (succinic and 4-hydroxybenzoic), secondary protonation leads to a weaker anomeric interaction site that apparently competes with the dominant one. Bond length changes indicate that the anomeric interaction decreases as malic > phthalic > succinic > 4-hydroxybenzoic, which correlates with the degree of proton transfer to the nitrogen centre. Along with other bond length and angle changes, the results offer insight into the applicability of the antiperiplanar lone pair hypothesis (ALPH) in a rigid system. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Jacalin is among the most thoroughly studied lectins. Its carbohydrate-binding site has also been well characterized. It has been postulated that the lower affinity of beta-galactosides for jacalin compared with beta-galactosides is caused by steric interactions of the substituents in the former with the protein. This issue has been explored energetically and structurally using different appropriate carbohydrate complexes of jacalin. It turns out that the earlier postulation is not correct. The interactions of the substituent with the binding site remain essentially the same irrespective of the anomeric nature of the substitution. This is achieved through a distortion of the sugar ring in beta-galactosides. The difference in energy, and therefore in affinity, is caused by a distortion of the sugar ring in beta-galactosides. The elucidation of this unprecedented distortion of the ligand as a strategy for modulating affinity is of general interest. The crystal structures also provide a rationale for the relative affinities of the different carbohydrate ligands for jacalin.
Resumo:
Drawing inspiration from real world interacting systems, we study a system consisting of two networks that exhibit antagonistic and dependent interactions. By antagonistic and dependent interactions we mean that a proportion of functional nodes in a network cause failure of nodes in the other, while failure of nodes in the other results in failure of links in the first. In contrast to interdependent networks, which can exhibit first-order phase transitions, we find that the phase transitions in such networks are continuous. Our analysis shows that, compared to an isolated network, the system is more robust against random attacks. Surprisingly, we observe a region in the parameter space where the giant connected components of both networks start oscillating. Furthermore, we find that for Erdos-Renyi and scale-free networks the system oscillates only when the dependence and antagonism between the two networks are very high. We believe that this study can further our understanding of real world interacting systems.
Resumo:
Structural information over the entire course of binding interactions based on the analyses of energy landscapes is described, which provides a framework to understand the events involved during biomolecular recognition. Conformational dynamics of malectin's exquisite selectivity for diglucosylated N-glycan (Dig-N-glycan), a highly flexible oligosaccharide comprising of numerous dihedral torsion angles, are described as an example. For this purpose, a novel approach based on hierarchical sampling for acquiring metastable molecular conformations constituting low-energy minima for understanding the structural features involved in a biologic recognition is proposed. For this purpose, four variants of principal component analysis were employed recursively in both Cartesian space and dihedral angles space that are characterized by free energy landscapes to select the most stable conformational substates. Subsequently, k-means clustering algorithm was implemented for geometric separation of the major native state to acquire a final ensemble of metastable conformers. A comparison of malectin complexes was then performed to characterize their conformational properties. Analyses of stereochemical metrics and other concerted binding events revealed surface complementarity, cooperative and bidentate hydrogen bonds, water-mediated hydrogen bonds, carbohydrate-aromatic interactions including CH-pi and stacking interactions involved in this recognition. Additionally, a striking structural transition from loop to beta-strands in malectin CRD upon specific binding to Dig-N-glycan is observed. The interplay of the above-mentioned binding events in malectin and Dig-N-glycan supports an extended conformational selection model as the underlying binding mechanism.
Resumo:
4-(p-X-phenyl)thiosemicarbazone of napthaldehyde {where X = Cl (HL1) and X = Br (HL2)}, thiosemicarbazone of quinoline-2-carbaldehyde (HL3) and 4-(p-fluorophenyl) thiosemicarbazone of salicylaldehyde (H2L4) and their copper(I) {Cu(HL1)(PPh3)(2)Br]center dot CH3CN (1) and Cu(HL2)(PPh3)(2)Cl]center dot DMSO (2)} and copper(II) {((Cu2L2Cl)-Cl-3)(2)(mu-Cl)(2)]center dot 2H(2)O (3) and Cu(L-4)(Py)] (4)} complexes are reported herein. The synthesized ligands and their copper complexes were successfully characterized by elemental analysis, cyclic voltammetry, NMR, ESI-MS, IR and UV-Vis spectroscopy. Molecular structures of all the Cu(I) and Cu(II) complexes have been determined by X-ray crystallography. All the complexes (1-4) were tested for their ability to exhibit DNA-binding and - cleavage activity. The complexes effectively interact with CT-DNA possibly by groove binding mode, with binding constants ranging from 10(4) to 10(5) M-1. Among the complexes, 3 shows the highest chemical (60%) as well as photo-induced (80%) DNA cleavage activity against pUC19 DNA. Finally, the in vitro antiproliferative activity of all the complexes was assayed against the HeLa cell line. Some of the complexes have proved to be as active as the clinical referred drugs, and the greater potency of 3 may be correlated with its aqueous solubility and the presence of the quinonoidal group in the thiosemicarbazone ligand coordinated to the metal.
Resumo:
We present a hybrid finite element based methodology to solve the coupled fluid structure problem of squeeze film effects in vibratory MEMS devices, such as gyroscopes, RF switches, and 2D resonators. The aforementioned devices often have a thin plate like structure vibrating normally to a fixed substrate, and are generally not perfectly vacuum packed. This results in a thin air film being trapped between the vibrating plate and the fixed substrate which behaves like a squeeze film offering both stiffness and damping. For accurate modelling of such devices the squeeze film effects must be incorporated. Extensive literature is available on squeeze film modelling, however only a few studies address the coupled fluid elasticity problem. The majority of the studies that account for the plate elasticity coupled with the fluid equation, either use approximate mode shapes for the plate or use iterative solution strategies. In an earlier work we presented a single step coupled methodology using only one type of displacement based element to solve the coupled problem. The displacement based finite element models suffer from locking issues when it comes to modelling very thin structures with the lateral dimensions much larger than the plate thickness as is typical in MEMS devices with squeeze film effects. In this work we present another coupled formulation where we have used hybrid elements to model the structural domain. The numerical results show a huge improvement in convergence and accuracy with coarse hybrid mesh as compared to displacement based formulations. We further compare our numerical results with experimental data from literature and find them to be in good accordance.
Resumo:
The peptide N-benzyloxycarbonyl-L-valyl-L-tyrosine methyl ester or NCbz-Val-Tyr-OMe (where NCbz is N-benzyloxycarbonyl and OMe indicates the methyl ester), C23H28N2O6, has an extended backbone conformation. The aromatic rings of the Tyr residue and the NCbz group are involved in various attractive intra- and intermolecular aromatic - interactions which stabilize the conformation and packing in the crystal structure, in addition to NH...O and OH...O hydrogen bonds. The aromatic - interactions include parallel-displaced, perpendicular T-shaped, perpendicular L-shaped and inclined orientations.
Resumo:
The self-assembly of p-pyridyl-ended oligo-p-phenylenevinylenes (OPVs) in ethanol leads to the formation of either hollow or solid microrods. The corresponding protonated OPVs with n-butyl chains induce transparent gelation and also gel phase crystallization owing to various synergistic noncovalent interactions. The chloride ion-selective gelation, AIEE and stimuli responsiveness of the gel are also observed.
Resumo:
We investigated the nature of the cohesive energy between graphane sheets via multiple CH center dot center dot center dot HC interactions, using density functional theory (DFT) including dispersion correction (Grimmes D3 approach) computations of n]graphane sigma dimers (n = 6-73). For comparison, we also evaluated the binding between graphene sheets that display prototypical pi/pi interactions. The results were analyzed using the block-localized wave function (BLW) method, which is a variant of ab initio valence bond (VB) theory. BLW interprets the intermolecular interactions in terms of frozen interaction energy (Delta E-F) composed of electrostatic and Pauli repulsion interactions, polarization (Delta E-pol), charge-transfer interaction (Delta E-CT), and dispersion effects (Delta E-disp). The BLW analysis reveals that the cohesive energy between graphane sheets is dominated by two stabilizing effects, namely intermolecular London dispersion and two-way charge transfer energy due to the sigma CH -> sigma*(HC) interactions. The shift of the electron density around the nonpolar covalent C-H bonds involved in the intermolecular interaction decreases the C-H bond lengths uniformly by 0.001 angstrom. The Delta E-CT term, which accounts for similar to 15% of the total binding energy, results in the accumulation of electron density in the interface area between two layers. This accumulated electron density thus acts as an electronic glue for the graphane layers and constitutes an important driving force in the self-association and stability of graphane under ambient conditions. Similarly, the double faced adhesive tape style of charge transfer interactions was also observed among graphene sheets in which it accounts for similar to 18% of the total binding energy. The binding energy between graphane sheets is additive and can be expressed as a sum of CH center dot center dot center dot HC interactions, or as a function of the number of C-H bonds.
Resumo:
Hydrochlorothiazide (HCT) is a diuretic and a BCS class IV drug with low solubility and low permeability, exhibiting poor oral absorption. The present study attempts to improve the physicochemical properties of the drug using a crystal engineering approach with cocrystals. Such multicomponent crystals of HCT with nicotinic acid (NIC), nicotinamide (NCT), 4-aminobenzoic acid (PABA), succinamide (SAM), and resorcinol (RES) were prepared using liquid-assisted grinding, and their solubilities in pH 7.4 buffer were evaluated. Diffusion and membrane permeability were studied using a Franz diffusion cell. Except for the SAM and NIC cocrystals, all other binary systems exhibited improved solubility. All of the cocrystals showed improved diffusion/membrane permeability compared to that of HCT with the exception of the SAM cocrystal. When the solubility was high, as in the case of PABA, NCT, and RES cocrystals, the flux/permeability dropped slightly. This is in agreement with the expected interplay between solubility and permeability. Improved solubility/permeability is attributed to new drug-coformer interactions. Cocrystals of SAM, however, showed poor solubility and flux This cocrystal contains a primary sulfonamide dimer synthon similar to that of HCT polymorphs, which may be a reason for its unusual behavior. Hirshfeld surface analysis was carried out in all cases to determine whether a correlation exists between cocrystal permeability and drug-coformer interactions.
Resumo:
The solid state structure of a new seven-membered sugar oxepane derivative, namely, p-bromo phenyl 4,5,7-tri-O-benzyl-beta-D-glycero-D-talo-septanoside is discussed, as determined through single crystal X-ray structural determination and in relation to their conformational features. The molecule adopts twist-chair as the preferred conformation, with conformational descriptor (TC2,3)-T-0,1. The solid state packing of molecules is governed by a rich network of non-covalent bonding originating from O-H center dot center dot center dot O, C-H center dot center dot center dot pi, C-H center dot center dot center dot Br and aromatic pi center dot center dot center dot pi interactions that stabilize the packing of molecules in the crystal. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The power of X-ray crystal structure analysis as a technique is to `see where the atoms are'. The results are extensively used by a wide variety of research communities. However, this `seeing where the atoms are' can give a false sense of security unless the precision of the placement of the atoms has been taken into account. Indeed, the presentation of bond distances and angles to a false precision (i.e. to too many decimal places) is commonplace. This article has three themes. Firstly, a basis for a proper representation of protein crystal structure results is detailed and demonstrated with respect to analyses of Protein Data Bank entries. The basis for establishing the precision of placement of each atom in a protein crystal structure is non-trivial. Secondly, a knowledge base harnessing such a descriptor of precision is presented. It is applied here to the case of salt bridges, i.e. ion pairs, in protein structures; this is the most fundamental place to start with such structure-precision representations since salt bridges are one of the tenets of protein structure stability. Ion pairs also play a central role in protein oligomerization, molecular recognition of ligands and substrates, allosteric regulation, domain motion and alpha-helix capping. A new knowledge base, SBPS (Salt Bridges in Protein Structures), takes these structural precisions into account and is the first of its kind. The third theme of the article is to indicate natural extensions of the need for such a description of precision, such as those involving metalloproteins and the determination of the protonation states of ionizable amino acids. Overall, it is also noted that this work and these examples are also relevant to protein three-dimensional structure molecular graphics software.
Resumo:
The rapid emergence of infectious diseases calls for immediate attention to determine practical solutions for intervention strategies. To this end, it becomes necessary to obtain a holistic view of the complex hostpathogen interactome. Advances in omics and related technology have resulted in massive generation of data for the interacting systems at unprecedented levels of detail. Systems-level studies with the aid of mathematical tools contribute to a deeper understanding of biological systems, where intuitive reasoning alone does not suffice. In this review, we discuss different aspects of hostpathogen interactions (HPIs) and the available data resources and tools used to study them. We discuss in detail models of HPIs at various levels of abstraction, along with their applications and limitations. We also enlist a few case studies, which incorporate different modeling approaches, providing significant insights into disease. (c) 2013 Wiley Periodicals, Inc.
Resumo:
The fig fig wasp system of Ficus racemosa constitutes an assemblage of galler and parasitoid wasps in which tritrophic interactions occur. Since predatory ants (Oecophylla smaragdina and Technomyrmex albipes) or mostly trophobiont-tending ants (Myrmicaria brunnea) were previously shown to differentially use volatile organic compounds (VOCs) from figs as proximal cues for predation on fig wasps, we examined the response of these ants to the cuticular hydrocarbons (CHCs) of the wasps. CHC signatures of gallers were distinguished from those of parasitoids by the methyl-branched alkanes 5-methylpentacosane and 13-methylnonacosane which characterised trophic group membership. CHC profiles of wasp predator and wasp prey were congruent suggesting that parasitoids acquire CHCs from their prey; the CHC composition of the parasitoid Apocrypta sp 2 clustered with that of its galler host Apocryptophagus fusca, while the CHC profile of the parasitoid Apocryptophagus agraensis clustered with its galler prey, the fig pollinator Ceratosolen fusciceps. In behavioural assays with ants, parasitoid CHC extracts evoked greater response in all ant species compared to galler extracts, suggesting that parasitoid CHC extracts contain more elicitors of ant behaviour than those of plant feeders. CHCs of some wasp species did not elicit significant responses even in predatory ants, suggesting chemical camouflage. Contrary to earlier studies which demonstrated that predatory ants learned to associate wasp prey with specific fig VOCs, prior exposure to fig wasp CHCs did not affect the reaction of any ant species to these CHCs. (C) 2015 Elsevier Masson SAS. All rights reserved.
Resumo:
While the tetrahedral face of methane has an electron rich centre and can act as a hydrogen bond acceptor, substitution of one of its hydrogens with some electron withdrawing group (such as -F/OH) can make the opposite face electron deficient. Electrostatic potential calculations confirm this and high level quantum calculations show interactions between the positive face of methanol/methyl fluoride and electron rich centers of other molecules such as H2O. Analysis of the wave functions of atoms in molecules shows the presence of an unusual C···Y interaction, which could be called 'carbon bonding'. NBO analysis and vibrational frequency shifts confirm the presence of this interaction. Given the properties of alkyl groups bonded to electronegative elements in biological molecules, such interactions could play a significant role, which is yet to be recognized. This and similar interactions could give an enthalpic contribution to what is called the 'hydrophobic interactions'.