352 resultados para Dielectric response
Resumo:
In this paper, dynamic response of an infinitely long beam resting on a foundation of finite depth, under a moving force is studied. The effect of foundation inertia is included in the analysis by modelling the foundation as a series of closely spaced axially vibrating rods of finite depth, fixed at the bottom and connected to the beam at the top. Viscous damping in the beam and foundation is included in the analysis. Steady state response of the beam-foundation system is obtained. Detailed numerical results are presented to study the effect of various parameters such as foundation mass, velocity of the moving load, damping and axial force on the beam. It is shown that foundation inertia can considerably reduce the critical velocity and can also amplify the beam response.
Molecular expression for dielectric friction on a rotating dipole: Reduction to the continuum theory
Resumo:
Recently we presented a microscopic expression for dielectric friction on a rotating dipole. This expression has a rather curious structure, involving the contributions of the transverse polarization modes of the solvent and also of the molecular length scale processes. It is shown here that under proper limiting conditions, this expression reduces exactly to the classical continuum model expression of Nee and Zwanzig [J. Chem. Phys. 52, 6353 (1970)]. The derivation requires the use of the asymptotic form of the orientation‐dependent total pair correlation function, the neglect of the contributions of translational modes of the solvent, and also the use of the limit that the size of the solvent molecules goes to zero. Thus, the derivation can be important in understanding the validity of the continuum model and can also help in explaining the results of a recent computer simulation study of dielectric relaxation in a Brownian dipolar lattice.
Resumo:
A molecular theory of underdamped dielectric relaxation of a dense dipolar liquid is presented. This theory properly takes into account the collective effects that are present (due to strong intermolecular correlations) in a dipolar liquid. For small rigid molecules, the theory again leads to a three-variable description which, however, is somewhat different from the traditional version. In particular, two of the three parameters are collective in nature and are determined by the orientational pair correlation function. A detailed comparison between the theory and the computer simulation results of Neria and Nitzan is performed and an excellent agreement is obtained without the use of any adjustable or free parameter - the calculation is fully microscopic. The theory can also provide a systematic description of the Poley absorption often observed in dipolar liquids in the high-frequency regime.
Resumo:
Multilayer lithium tantalate thin films were deposited on Pt-Si Si(111)/SiO2/TiO2/Pt(111)]substrates by sol-gel process. The films were annealed at different annealing temperatures (300, 450 and 650 degrees C) for 15 min. The films are polycrystalline at 650 degrees C and at other annealing conditions below 650 degrees C the films are in amorphous state. The films were characterized using X-ray diffraction, atomic force microscopy (AFM) and Raman spectroscopy. The AFM of images show the formation of nanograins of uniform size (50 nm) at 650 degrees C. These polycrystalline films exhibit spontaneous polarization of 1.5 mu C/cm(2) at an application of 100 kV/cm. The dielectric constant of multilayer film is very small (6.4 at 10 kHz) as compared to that of single crystal. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The equivalent circuit parameters for a pentacene organic field-effect transistor are determined from low frequency impedance measurements in the dark as well as under light illumination. The source-drain channel impedance parameters are obtained from Bode plot analysis and the deviations at low frequency are mainly due to the contact impedance. The charge accumulation at organic semiconductor-metal interface and dielectric-semiconductor interface is monitored from the response to light as an additional parameter to find out the contributions arising from photovoltaic and photoconductive effects. The shift in threshold voltage is due to the accumulation of photogenerated carriers under source-drain electrodes and at dielectric-semiconductor interface, and also this dominates the carrier transport. The charge carrier trapping at various interfaces and in the semiconductor is estimated from the dc and ac impedance measurements under illumination. (c) 2010 American Institute of Physics. doi: 10.1063/1.3517085]
Resumo:
Mutation and/or dysfunction of signaling proteins in the mitogen activated protein kinase (MAPK) signal transduction pathway are frequently observed in various kinds of human cancer. Consistent with this fact, in the present study, we experimentally observe that the epidermal growth factor (EGF) induced activation profile of MAP kinase signaling is not straightforward dose-dependent in the PC3 prostate cancer cells. To find out what parameters and reactions in the pathway are involved in this departure from the normal dose-dependency, a model-based pathway analysis is performed. The pathway is mathematically modeled with 28 rate equations yielding those many ordinary differential equations (ODE) with kinetic rate constants that have been reported to take random values in the existing literature. This has led to us treating the ODE model of the pathways kinetics as a random differential equations (RDE) system in which the parameters are random variables. We show that our RDE model captures the uncertainty in the kinetic rate constants as seen in the behavior of the experimental data and more importantly, upon simulation, exhibits the abnormal EGF dose-dependency of the activation profile of MAP kinase signaling in PC3 prostate cancer cells. The most likely set of values of the kinetic rate constants obtained from fitting the RDE model into the experimental data is then used in a direct transcription based dynamic optimization method for computing the changes needed in these kinetic rate constant values for the restoration of the normal EGF dose response. The last computation identifies the parameters, i.e., the kinetic rate constants in the RDE model, that are the most sensitive to the change in the EGF dose response behavior in the PC3 prostate cancer cells. The reactions in which these most sensitive parameters participate emerge as candidate drug targets on the signaling pathway. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
We describe the synthesis structures and dielectric properties of new perovskite oxides of the formula (Ba3MTiMO9)-Ti-III-O-V for M-III = Fe Ga Y Lu and M-V = Nb Ta Sb While M-V = Nb and Ta oxides adopt disordered/partially ordered 3C perovskite structures where M-III/Ti/M-V metal-oxygen octahedra are corner connected the M-V = Sb oxides show a distinct preference for the 6H structure where Sb-V/Ti-IV metal-oxygen octahedra share a common face forming (Sb Ti)O-9 dimers that are corner-connected to the (MO6)-O-III octahedra The preference of antimony oxides (Sb-V 4d(10)) for the 6H structure which arises from a special Sb-V-O chemical bonding that tends to avoid linear Sb-O-Sb linkages unlike Nb-V/Ta-V d(0) atoms which prefer similar to 180 degrees Nb/Ta-O-Nb/Ta linkages - is consistent with the crystal chemistry of M-V-O oxides in general The dielectric properties reveal a significant difference among Mill members All the oxides with the 3C structure excepting those with Mill = Fe show a normal low loss dielectric behaviour with epsilon = 20-60 in the temperature range 50-400 degrees C the M-III = Fe members with this structure (M-V = Nb Ta) display a relaxor-like ferroelectric behaviour with large E values at frequencies <= 1 MHz (50-500 degrees C) (C) 2010 Elsevier Masson SAS All rights reserved
Resumo:
Recycling plastic waste from water bottles has become one of the major challenges worldwide. The present study provides an approach for the use plastic waste as reinforcement material in soil. The experimental results in the form of stress-strain-pore water pressure response are presented. Based on experimental test results, it is observed that the strength of soil is improved and compressibility reduced significantly with addition of a small percentage of plastic waste to the soil. The use of the improvement in strength and compressibility response due to inclusion of plastic waste can be advantageously used in bearing capacity improvement and settlement reduction in the design of shallow foundations. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Improved performance of plasma in raw engine exhaust treatment is reported. A new type of reactor referred to as of cross-flow dielectric barrier discharge (DBD) was used, in which the gas flow is perpendicular to the corona electrode. In raw exhaust environment, the cross-flow (radial-flow) reactor exhibits a superior performance with regard to NOX removal when compared to that with axial flow of gas. Experiments were conducted at different flow rates ranging from 2 L/min to 25 L/min. The plasma assisted barrier discharge reactor has shown encouraging results in NOx removal at high flow rates.
Resumo:
Influence of succinonitrile (SN) dynamics on ion transport in SN-lithium perchlorate (LiClO4) electrolytes is discussed here via dielectric relaxation spectroscopy. Dielectric relaxation spectroscopy (similar to 2 x 10(-3) Hz to 3 MHz) of SN and SN-LiClO4 was studied as a function of salt content (up to 7 mol % or 1 M) and temperature (-20 to +60 degrees C). Analyses of real and imaginary parts of permittivity convincingly reveal the influence Of trans gauche isomerism and solvent-salt association (solvation) effects on ion transport. The relaxation processes are highly dependent on the salt concentration and temperature. While pristine SN display only intrinsic dynamics (i.e., trans-gauche isomerism) which enhances with an increase in temperature, SN-LiClO4 electrolytes especially at high salt concentrations (similar to 0.04-1 M) show salt-induced relaxation processes. In the concentrated electrolytes, the intrinsic dynamics was observed to be a function of salt content, becoming faster with an increase in salt concentration. Deconvolution of the imaginary part of the permittivity spectra using Havriliak-Negami (HN) function show a relaxation process corresponding to the above phenomena. The permittivity data analyzed using HN and Kohlrausch-Williams-Watta (KWW) functions show non-Debye relaxation processes and enhancement in the trans phase (enhanced solvent dynamics) as a function of salt concentration and temperature.
Resumo:
A new method is described for measuring intracellular free calcium concentrations, [(Ca2+)(i)], in the cells of Dictyostelium discoideum transformed with apoaequorin cDNA of the jellyfish, Aequorea victoria. Aequorin, a calcium-specific indicator, was regenerated in vivo from apoaequorin produced in the cells by incubation with coelenterazine. The results showed that [(Ca2+)(i)] in developing cells markedly increases at the aggregation stage and again at the culmination stage after a temporary drop at the migration stage. Except for the vegetative stage, the cells al all stages of development exhibit a sharp transient increase in [(Ca2+)(i)] upon stimulation with a cAMP (50 nM) pulse, high responses being observed at the migration and culmination stages. Separated prestalk cells of migrating slugs contain more than twice as much [(Ca2+)(i)] and show three times as large a response to cAMP stimulation as prespore cells.
Resumo:
When examined using continuous wave electron paramagnetic resonance and nuclear magnetic resonance spectrometers, the high T-c superconductors give rise to intense, low field, 'non-resonant' absorption signals in the superconducting state. This phenomenon can be used as a highly sensitive, contactless technique for the detection and characterization of superconductivity even in samples containing only minute amounts of the superconducting phase. Further, it can also be applied to the determination of material parameters of interest such as J(c) and H-c2 in addition to being a powerful way of distinguishing between weak-link superconductivity and bulk superconductivity. The details of these aspects are discussed
Resumo:
Recently, it was found that a reduction in atmospheric CO2 concentration leads to a temporary increase in global precipitation. We use the Hadley Center coupled atmosphere-ocean model, HadCM3L, to demonstrate that this precipitation increase is a consequence of precipitation sensitivity to changes in atmospheric CO2 concentrations through fast tropospheric adjustment processes. Slow ocean cooling explains the longer-term decrease in precipitation. Increased CO2 tends to suppress evaporation/precipitation whereas increased temperatures tend to increase evaporation/precipitation. When the enhanced CO2 forcing is removed, global precipitation increases temporarily, but this increase is not observed when a similar negative radiative forcing is applied as a reduction of solar intensity. Therefore, transient precipitation increase following a reduction in CO2-radiative forcing is a consequence of the specific character of CO2 forcing and is not a general feature associated with decreases in radiative forcing. Citation: Cao, L., G. Bala, and K. Caldeira (2011), Why is there a short-term increase in global precipitation in response to diminished CO2 forcing?, Geophys. Res. Lett., 38, L06703, doi:10.1029/2011GL046713.
Resumo:
The 1300-km rupture of the 2004 interplate earthquake terminated at around 15 degrees N, in the northernmost segment of the Andaman-Nicobar subduction zone. This part of the plate boundary is noted for its generally lower level seismicity, compared with the southern segments. Based on the Global Centroid Moment Tensor (CMT) and National Earthquake Information Center (NEIC) data, most of the earthquakes of M-w >= 4.5 prior to 2004 were associated with the Andaman Spreading Ridge (ASR), and a few events were located within the forearc basin. The 2004 event was followed by an upward migration of hypocenters along the subducting plate, and the Andaman segment experienced a surge of aftershock activity. The continuing extensional faulting events, including the most recent earthquake (10 August 2009; M-w 7.5) in the northern end of the 2004 rupture, suggest the reduction of compressional strain associated with the interplate event. The style of faulting of the intraplate events before and after a great plate boundary earthquake reflects the relative influences of the plate-driving forces. Here we discuss the pattern of earthquakes in the Andaman segment before and after the 2004 event to appraise the spatial and temporal relation between large interplate thrust events and intraplate deformation. This study suggests that faulting mechanisms in the outer-ridge and outer-rise regions could be indicative of the maturity of interplate seismic cycles.