265 resultados para DNA Content
Resumo:
The extremities of chromosomes end in a G-rich single-stranded overhang that has been implicated in the onset of the replicate senescence. The repeated sequence forming a G-overhang is able to adopt a four-stranded DNA structure called G-quadruplex, which is a poor substrate for the enzyme telomerase. Small molecule based ligands that selectively stabilize the telomeric G-quadruplex DNA, induce telomere shortening eventually leading to cell death. Herein, we have investigated the G-quadruplex DNA interaction with two isomeric bisbenzimidazole-based compounds that differ in terms of shape (V-shaped angular vs linear).While the linear isomer induced some stabilization of the intramolecular G-quadruplex structure generated in the presence of Na+ the other, having V-shaped central planar core, caused a dramatic structural alteration of the latter, above a threshold concentration. This transition was evident from the pronounced changes observed in the circular dichroism spectra and from the get mobility shift assa involving the G-quadruples DNA. Notably, this angular isomer could also induce the G-quadruplex formation in the absence of any added cation. The ligand-quadruples complexes were investigated by computational molecular modeling, providing further information on structure-activity relationships. Finally, TRAP (telomerase repeat amplification protocol) experiments demonstrated that the angular isomer is selective toward the inhibition of telomerase activity.
Resumo:
The cloned DNA fragment of the cytochrome P-450b/e gene containing the upstream region from position -179 through part of the first exon is faithfully transcribed in freeze-thawed rat liver nuclei. Phenobarbitone treatment of the animal strikingly increases this transcription, and the increase is blocked by cycloheximide (protein synthesis inhibitor) or CoCl2 (heme biosynthetic inhibitor) treatment of animals. This picture correlates very well with the reported cytochrome P-450b/e mRNA levels in vivo and run-on transcription rates in vitro under these conditions. The upstream region (from position -179) was assessed for protein binding with nuclear extracts by nitrocellulose filter binding, gel retardation, DNase I treatment ("footprinting"), and Western blot analysis. Phenobarbitone treatment dramatically increases protein binding to the upstream region, an increase once again blocked by cycloheximide or CoCl2 treatments. Addition of heme in vitro to heme-deficient nuclei and nuclear extracts restores the induced levels of transcription and protein binding to the upstream fragment, respectively. Thus, drug-mediated synthesis and heme-modulated binding of a transcription factor(s) appear involved in the transcriptional activation of the cytochrome P-450b/e genes, and an 85-kDa protein may be a major factor in this regard.
Resumo:
Antibodies raised against denatured DNA complexed with methylated bovine serum albumin have been reported to react with ssDNA but not with dsDNA. Using a highly sensitive avidin-biotin microELISA, we report that such antibodies also bind to dsDNA. Antibodies which reacted with ssDNA and dsDNA were found to be IgG type. The antibodies did not react with tRNA and rRNA. The binding of antibodies to dsDNA was partially inhibited dy individual deoxyribonucleotides. ssDNA as well as dsDNA inhibited the binding of antibodies to dsDNA. The binding of these antibodies to supercoiled and relaxed forms of pBR322 DNA was demonstrated by gel retardation assay. The cross-reaction with ssDNA was observed even after affinity purification on native DNA-cellulose. The antibodies were also shown to bind to poly(dA-dT)·poly(dA-dT)
Resumo:
A fully self-consistent formulation is described here for the analysis and generation of base-pairs in non-uniform DNA structures, in terms of various local parameters. It is shown that the internal "wedge parameters" are mathematically related to the parameters describing the base-pair orientation with respect to an external helix axis. Hence any one set of three translation and three rotation parameters are necessary and sufficient to completely describe the relative orientation of the base-pairs comprising a step (or doublet). A general procedure is outlined for obtaining an average or global helix axis from the local helix axes for each step. A graphical representation of the local helix axes in the form of a polar plot is also shown and its application for estimating the curvature of oligonucleotide structures is illustrated, with examples of both A and B type structures.
Resumo:
A general method for generation of base-pairs in a curved DNA structure, for any prescribed values of helical parameters--unit rise (h), unit twist (theta), wedge roll (theta R) and wedge tilt (theta T), propeller twist (theta p) and displacement (D) is described. Its application for generation of uniform as well curved structures is also illustrated with some representative examples. An interesting relationship is observed between helical twist (theta), base-pair parameters theta x, theta y and the wedge parameters theta R, theta T, which has important consequences for the description and estimation of DNA curvature.
Resumo:
Changes in MAPK activities were examined in the corpus luteum (CL) during luteolysis and pregnancy, employing GnRH antagonist (Cetrorelix)-induced luteolysis, stages of CL, and hCG treatment to mimic early pregnancy as model systems in the bonnet monkey. We hypothesized that MAPKs could serve to phosphorylate critical phosphoproteins to regulate luteal function. Analysis of several indices for structural (caspase-3 activity and DNA fragmentation) and functional (progesterone and steroidogenic acute regulatory protein expression) changes in the CL revealed that the decreased luteal function observed during Cetrorelix treatment and late luteal phase was associated with increased caspase-3 activity and DNA fragmentation. As expected, human chorionic gonadotropin treatment dramatically increased luteal function, but the indices for structural changes were only partially attenuated. All three MAPKs appeared to be constitutively active in the mid-luteal-phase CL, and activities of ERK-1/2 and p38-MAPK (p38), but not Jun N-terminal kinase (JNK)-1/2, decreased significantly (P < 0.05) within 12 - 24 h after Cetrorelix treatment. During the late luteal phase, in contrast to decreased ERK-1/2 and p38 activities, JNK-1/2 activities increased significantly (P < 0.05). Although human chorionic gonadotropin treatment increased ERK-1/2 and p38 activities, it decreased JNK-1/2 activities. The activation status of p38 was correlated with the phosphorylation status of an upstream activator, MAPK kinase-3/6 and the expression of MAPK activated protein kinase-3, a downstream target. Intraluteal administration of p38 kinase inhibitor (SB203580), but not MAPK kinase-1/2 inhibitor (PD98059), decreased the luteal function. Together, these data suggest an important role for p38 in the regulation of CL function in primates.
Resumo:
The crystal structure of a hexamer duplex d(CACGTG)(2) has been determined and refined to an R-factor of 18.3% using X-ray data up to 1.2 angstrom resolution. The sequence crystallizes as a left-handed Z-form double helix with Watson-Crick base pairing. There is one hexamer duplex, a spermine molecule, 71 water molecules, and an unexpected diamine (Z-5, 1,3-propanediamine, C3H10N2)) in the asymmetric unit. This is the high-resolution non-disordered structure of a Z-DNA hexamer containing two AT base pairs in the interior of a duplex with no modifications such as bromination or methylation on cytosine bases. This structure does not possess multivalent cations such as cobalt hexaammine that are known to stabilize Z-DNA. The overall duplex structure and its crystal interactions are similar to those of the pure-spermine form of the d(CGCGCG)(2) structure. The spine of hydration in the minor groove is intact except in the vicinity of the T5A8 base pair. The binding of the Z-5 molecule in the minor grove of the d(CACGTG)(2) duplex appears to have a profound effect in conferring stability to a Z-DNA conformation via electrostatic complementarity and hydrogen bonding interactions. The successive base stacking geometry in d(CACGTG)(2) is similar to the corresponding steps in d(CG)(3). These results suggest that specific polyamines such as Z-5 could serve as powerful inducers of Z-type conformation in unmodified DNA sequences with AT base pairs. This structure provides a molecular basis for stabilizing AT base pairs incorporated into an alternating d(CG) sequence.
Resumo:
Dicobalt(II) complexes [{(B)Co-11)(2)(mu-dtdp)(2)] (1-3) of 3,3'-dithiodipropionic acid (dtdp) and phenanthroline bases (B), viz. 1,10-phenanthroline (phen in 1), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 2) and dipyrido13,2-a:2',3'-clphenazine (dppz in 3), have been prepared, characterized and their photo-induced anaerobic DNA cleavage activity studied. The elemental analysis and mass spectral data suggest binuclear formulation of the complexes. The redox inactive complexes have magnetically non-interacting dicobalt(II) core showing magnetic moment of similar to 3.9 p per cobalt(II) center. The complexes show good binding propensity to calf thymus DNA giving K-b values within 4.3 x 10(5)-4.0 x 10(6) M-1. Thermal melting and viscosity data predict DNA groove binding and/or partial intercalative nature of the complexes. The complexes show significant anaerobic DNA cleavage activity in green light under argon atmosphere possibly involving radical species generated from the disulfide moiety in a type-I pathway. The DNA cleavage reaction under aerobic medium in green light is found to involve hydroxyl radical species. The dppz complex 3 exhibits significant photocytotoxicity in HeLa cervical cancer cells with an IC50 value of 2.31 mu M in UV-A light of 365 nm, while it is essentially non-toxic in dark giving an IC50 value of >200 mu M. A significant reduction of the dark toxicity of the organic dppz base (IC50 = 8.3 mu M in dark) is observed on binding to the cobalt(II) center while essentially retaining its photocytotoxicity in UV-A light (IC50 = 0.4 mu M). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Ferrocene-appended copper(II) complexes [Cu( Fc-tpy)(B)](ClO4)(2) (1-3) and [Cu(Ph-tpy)(dppz)](ClO4)(2) (4) as control, where Fc-tpy is 4'-ferroceny1-2,2':6',2 ''-terpyridine, Ph-tpy is 4'-pheny1-2,2':6',2 ''-terpyridine, and B is a phenanthroline base, viz., 1,10-phenanthroline (phen, 1), dipyridoquinoxaline (dpq, 2), and dipyridophenazine (dppz, 3), were prepared and structurally characterized, and their DNA binding, photoactivated DNA cleavage activity, and cytotoxic properties were studied [Fe = (eta(5)-C5H4)Fe-11(eta(5)-C5H5)]. Complexes 1 and 3 as hexafluorophosphate salts were structurally characterized by X-ray crystallography. Molecular structures of [Cu(Fc-tpy)(phen)](PF6)(2) (1a) and [Cu(Fc-tpy)(dppz)](PF6)(2)center dot MeCN (3a center dot MeCN) show a distorted square-pyramidal geometry at copper(II), with the Fc-tpy ligand and the phenanthroline base showing respective tridentate and bidentate binding modes. The phenanthroline base exhibits axial-equatorial bonding, while the Fc-tpy ligand binds at the basal plane. The complexes showed quasi-reversible cyclic voltammetric responses near 0.45 and -0.3 V vs SCE in aqueous DMF-0.1 M KCl assignable to the Fc(+)-Fc and Cu(II) Cu(1) redox couples, respectively. The complexes bind to DNA, giving K-b values of 1.4 x 10(4) to 5.6 x 10(5) M-1 in the order 4 similar to 3 > 2 > 1. Thermal denaturation and viscometric titration data suggest groove and/or partial intercalative mode of DNA binding of the complexes. The complexes showed chemical nuclease activity in the presence of 3-mercaptopropionic acid (0.5 mM) or H2O2 (0.25 mM). Complexes 2-4 showed plasmid DNA cleavage activity in visible light, forming (OH)-O-center dot radicals. The Fc-tpy complex 3 showed better DNA photocleavage activity than its Ph-tpy analogue. The ferrocene moiety in the dppz complex 3 makes it more photocytotoxic than the Ph-tpy analogue 4 in HeLa cells.
Resumo:
Uracil N-glycosylase (Ung) is the most thoroughly studied of the group of uracil DNA-glycosylase (UDG) enzymes that catalyse the first step in the uracil excision-repair pathway. The overall structure of the enzyme from Mycobacterium tuberculosis is essentially the same as that of the enzyme from other sources. However, differences exist in the N- and C-terminal stretches and some catalytic loops. Comparison with appropriate structures indicate that the two-domain enzyme closes slightly when binding to DNA, while it opens slightly when binding to the proteinaceous inhibitor Ugi. The structural changes in the catalytic loops on complexation reflect the special features of their structure in the mycobacterial protein. A comparative analysis of available sequences of the enzyme from different sources indicates high conservation of amino-acid residues in the catalytic loops. The uracil-binding pocket in the structure is occupied by a citrate ion. The interactions of the citrate ion with the protein mimic those of uracil, in addition to providing insights into other possible interactions that inhibitors could be involved in.
Resumo:
DNA adopts different conformations not only based on novel base pairs, but also with different chain polarities. Besides several duplex structures (A, B, Z, parallel stranded (ps)-DNA, etc.), DNA also forms higher-order structures like triplex, tetraplex, and i-motif. Each of these structures has its own biological significance. The ps-duplexes have been found to be resistant to certain nucleases and endonucleases. Molecules that promote triple-helix formation have significant potential. These investigations have many therapeutic advantages which may be useful in the regulation of the expression of genes responsible for certain diseases by locking either their transcription (antigene) or translation (antisense). Each DNA minor groove binding ligand (MGBL) interacts with DNA through helical minor groove recognition in a sequence-specific manner, and this interferes with several DNA-associated processes. Incidentally, these ligands interact with some non-B-DNA and with higher-order DNA structures including ps-DNA and triplexes. While the design and recognition of minor grooves of duplex DNA by specific MGBLs have been a topic of many reports, limited information is available on the binding behavior of MGBLs with nonduplex DNA. In this review, we summarize various attempts of the interaction of MGBLs with ps-DNA and DNA triplexes.
Resumo:
Antibodies raised against deoxyadenylate and deoxycytidylate were found to react with double stranded DNA as assessed by highly sensitive avidin-biotin microELISA. The binding was specific as it was completely inhibited by the homologous hapten. The antibodies did not react with tRNA and rRNA. These antibodies were also shown to react with supercoiled and relaxed forms of pBR322 DNA as demonstrated by gel retardation assay. ssDNA, single-stranded DNA; dsDNA, double-stranded DNA; CT DNA, calf thymus DNA; AB microELISA, avidin-biotin microELISA; dpA, deoxyadenylate; dpC, deoxycytidylate; avidin-HRP, avidin-horseradish peroxidase
Resumo:
The basic method of JIc calculation using a single specimen is discussed. Dokouipil's approach for evaluating the JIc value is extended further and the effect of prestrain on rolled mild steel with significant inclusions is studied using this modified approach. Although this method does not give an accurate value of JIc, it is quite effective for a comparative study. While the fracture toughness of annealed and 7% prestrained materials are about the same, the fracture toughness of 3% prestrained material is significantly lower.
Resumo:
Background: HU a small, basic, histone like protein is a major component of the bacterial nucleoid. E. coli has two subunits of HU coded by hupA and hupB genes whereas Mycobacterium tuberculosis (Mtb) has only one subunit of HU coded by ORF Rv2986c (hupB gene). One noticeable feature regarding Mtb HupB, based on sequence alignment of HU orthologs from different bacteria, was that HupB(Mtb) bears at its C-terminal end, a highly basic extension and this prompted an examination of its role in Mtb HupB function. Methodology/Principal Findings: With this objective two clones of Mtb HupB were generated; one expressing full length HupB protein (HupB(Mtb)) and another which expresses only the N terminal region (first 95 amino acid) of hupB (HupB(MtbN)). Gel retardation assays revealed that HupBMtbN is almost like E. coli HU (heat stable nucleoid protein) in terms of its DNA binding, with a binding constant (K-d) for linear dsDNA greater than 1000 nM, a value comparable to that obtained for the HU alpha alpha and HU alpha beta forms. However CTR (C-terminal Region) of HupB(Mtb) imparts greater specificity in DNA binding. HupB(Mtb) protein binds more strongly to supercoiled plasmid DNA than to linear DNA, also this binding is very stable as it provides DNase I protection even up to 5 minutes. Similar results were obtained when the abilities of both proteins to mediate protection against DNA strand cleavage by hydroxyl radicals generated by the Fenton's reaction, were compared. It was also observed that both the proteins have DNA binding preference for A: T rich DNA which may occur at the regulatory regions of ORFs and the oriC region of Mtb. Conclusions/Significance: These data thus point that HupB(Mtb) may participate in chromosome organization in-vivo, it may also play a passive, possibly an architectural role.