244 resultados para ARTIFICIAL MULTIPLE TETRAPLOID


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondria are indispensable organelles implicated in multiple aspects of cellular processes, including tumorigenesis. Heat shock proteins play a critical regulatory role in accurately delivering the nucleus-encoded proteins through membrane-bound presequence translocase (Tim23 complex) machinery. Although altered expression of mammalian presequence translocase components had been previously associated with malignant phenotypes, the overall organization of Tim23 complexes is still unsolved. In this report, we show the existence of three distinct Tim23 complexes, namely, B1, B2, and A, involved in the maintenance of normal mitochondrial function. Our data highlight the importance of Magmas as a regulator of translocase function and in dynamically recruiting the J-proteins DnaJC19 and DnaJC15 to individual translocases. The basic housekeeping function involves translocases B1 and B2 composed of Tim17b isoforms along with DnaJC19, whereas translocase A is nonessential and has a central role in oncogenesis. Translocase B, having a normal import rate, is essential for constitutive mitochondrial functions such as maintenance of electron transport chain complex activity, organellar morphology, iron-sulfur cluster protein biogenesis, and mitochondrial DNA. In contrast, translocase A, though dispensable for housekeeping functions with a comparatively lower import rate, plays a specific role in translocating oncoproteins lacking presequence, leading to reprogrammed mitochondrial functions and hence establishing a possible link between the TIM23 complex and tumorigenicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Muscle-specific deficiency of iron-sulfur (Fe-S) cluster scaffold protein (ISCU) leads to myopathy. Results: Cells carrying the myopathy-associated G50E ISCU mutation demonstrate impaired Fe-S cluster biogenesis and mitochondrial dysfunction. Conclusion: Reduced mitochondrial respiration as a result of diminished Fe-S cluster synthesis results in muscle weakness in myopathy patients. Significance: The molecular mechanism behind disease progression should provide invaluable information to combat ISCU myopathy. Iron-sulfur (Fe-S) clusters are versatile cofactors involved in regulating multiple physiological activities, including energy generation through cellular respiration. Initially, the Fe-S clusters are assembled on a conserved scaffold protein, iron-sulfur cluster scaffold protein (ISCU), in coordination with iron and sulfur donor proteins in human mitochondria. Loss of ISCU function leads to myopathy, characterized by muscle wasting and cardiac hypertrophy. In addition to the homozygous ISCU mutation (g.7044GC), compound heterozygous patients with severe myopathy have been identified to carry the c.149GA missense mutation converting the glycine 50 residue to glutamate. However, the physiological defects and molecular mechanism associated with G50E mutation have not been elucidated. In this report, we uncover mechanistic insights concerning how the G50E ISCU mutation in humans leads to the development of severe ISCU myopathy, using a human cell line and yeast as the model systems. The biochemical results highlight that the G50E mutation results in compromised interaction with the sulfur donor NFS1 and the J-protein HSCB, thus impairing the rate of Fe-S cluster synthesis. As a result, electron transport chain complexes show significant reduction in their redox properties, leading to loss of cellular respiration. Furthermore, the G50E mutant mitochondria display enhancement in iron level and reactive oxygen species, thereby causing oxidative stress leading to impairment in the mitochondrial functions. Thus, our findings provide compelling evidence that the respiration defect due to impaired biogenesis of Fe-S clusters in myopathy patients leads to manifestation of complex clinical symptoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water-tert-butyl alcohol (TBA) binary mixture exhibits a large number of thermodynamic and dynamic anomalies. These anomalies are observed at surprisingly low TBA mole fraction, with x(TBA) approximate to 0.03-0.07. We demonstrate here that the origin of the anomalies lies in the local structural changes that occur due to self-aggregation of TBA molecules. We observe a percolation transition of the TBA molecules at x(TBA) approximate to 0.05. We note that ``islands'' of TBA clusters form even below this mole fraction, while a large spanning cluster emerges above that mole fraction. At this percolation threshold, we observe a lambda-type divergence in the fluctuation of the size of the largest TBA cluster, reminiscent of a critical point. Alongside, the structure of water is also perturbed, albeit weakly, by the aggregation of TBA molecules. There is a monotonic decrease in the tetrahedral order parameter of water, while the dipole moment correlation shows a weak nonlinearity. Interestingly, water molecules themselves exhibit a reverse percolation transition at higher TBA concentration, x(TBA) approximate to 0.45, where large spanning water clusters now break-up into small clusters. This is accompanied by significant divergence of the fluctuations in the size of largest water cluster. This second transition gives rise to another set of anomalies around. Both the percolation transitions can be regarded as manifestations of Janus effect at small molecular level. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-invasive 3D imaging in materials and medical research involves methodologies such as X-ray imaging, MRI, fluorescence and optical coherence tomography, NIR absorption imaging, etc., providing global morphological/density/absorption changes of the hidden components. However, molecular information of such buried materials has been elusive. In this article we demonstrate observation of molecular structural information of materials hidden/buried in depth using Raman scattering. Typically, Raman spectroscopic observations are made at fixed collection angles, such as, 906, 1356, and 1806, except in spatially offset Raman scattering (SORS) (only back scattering based collection of photons) and transmission techniques. Such specific collection angles restrict the observations of Raman signals either from or near the surface of the materials. Universal Multiple Angle Raman Spectroscopy (UMARS) presented here employs the principle of (a) penetration depth of photons and then diffuse propagation through non-absorbing media by multiple scattering and (b) detection of signals from all the observable angles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We developed a multiple light-sheet microscopy (MLSM) system capable of 3D fluorescence imaging. Employing spatial filter in the excitation arm of a SPIM system, we successfully generated multiple light-sheets. This improves upon the existing SPIM system and is capable of 3D volume imaging by simultaneously illuminating multiple planes in the sample. Theta detection geometry is employed for data acquisition from multiple specimen layers. This detection scheme inherits many advantages including, background reduction, cross-talk free fluorescence detection and high-resolution at long working distance. Using this technique, we generated 5 equi-intense light-sheets of thickness approximately 7: 5 mm with an inter-sheet separation of 15 mm. Moreover, the light-sheets generated by MLSM is found to be 2 times thinner than the state-of-art SPIM system. Imaging of fluorescently coated yeast cells of size 4 +/- 1 mm (encaged in Agarose gel-matrix) is achieved. Proposed imaging technique may accelerate the field of fluorescence microscopy, cell biology and biophotonics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a low-complexity algorithm SAGE-USL is presented for 3-dimensional (3-D) localization of multiple acoustic sources in a shallow ocean with non-Gaussian ambient noise, using a vertical and a horizontal linear array of sensors. In the proposed method, noise is modeled as a Gaussian mixture. Initial estimates of the unknown parameters (source coordinates, signal waveforms and noise parameters) are obtained by known/conventional methods, and a generalized expectation maximization algorithm is used to update the initial estimates iteratively. Simulation results indicate that convergence is reached in a small number of (<= 10) iterations. Initialization requires one 2-D search and one 1-D search, and the iterative updates require a sequence of 1-D searches. Therefore the computational complexity of the SAGE-USL algorithm is lower than that of conventional techniques such as 3-D MUSIC by several orders of magnitude. We also derive the Cramer-Rao Bound (CRB) for 3-D localization of multiple sources in a range-independent ocean. Simulation results are presented to show that the root-mean-square localization errors of SAGE-USL are close to the corresponding CRBs and significantly lower than those of 3-D MUSIC. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop an optical system for generating multiple light sheets. This is enabled by employing a special class of spatial filters in a cylindrical lens geometry. The proposed binary filter placed at the back aperture of the cylindrical lens results in the generation of a periodic transverse pattern extending along the z axis (i.e., multiple light sheets). Experimental results confirm the generation of multiple light sheets of thickness 6.6 mu m with an intersheet spacing of 13.4 mu m. The proposed imaging technique may facilitate three-dimensional imaging in nano-optics, fluorescence microscopy, and nanobiology. (C) 2014 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a theoretical model using a density matrix approach to show the influence of multiple excited states on the optical properties of an inhomogeneously broadened Lambda V-system of the Rb-87 D2 line. These closely spaced multiple excited states cause asymmetry in absorption and dispersion profiles. We observe the reduced absorption profiles, due to dressed state interactions of the applied electromagnetic fields, which results the Mollow sideband-like transparency windows. In a room temperature vapor, we obtain a narrow enhanced absorption and steep positive dispersion at the line center when the strengths of control and pump fields are equal. Here, we show how the probe transmittance varies when it passes through the atomic medium. We also discuss the transient behavior of our system which agrees well with the corresponding absorption and dispersion profiles. This study has potential applications in controllability of group velocity, and for optical and quantum information processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of radiative coupling between scattering and absorbing aerosols, in an external mixture, on the aerosol radiative forcing (ARF) due to black carbon (BC), its sensitivity to the composite aerosol loading and composition, and surface reflectance are investigated using radiative transfer model simulations. The ARF due to BC is found to depend significantly on the optical properties of the `neighboring' (non-BC) aerosol species. The scattering due to these species significantly increases the top of the atmospheric warming due to black carbon aerosols, and significant changes in the radiative forcing efficiency of BC. This is especially significant over dark surfaces (such as oceans), despite the ARF due to BC being higher over snow and land-surfaces. The spatial heterogeneity of this effect (coupling or multiple scattering by neighboring aerosol species) imposes large uncertainty in the estimation ARF due to BC aerosols, especially over the oceans. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new colorimetric probe has been developed for the detection and estimation of Pd-II at sub-nanomolar concentrations. The probe consisted of rhodamine (signaling unit), which was linked with a bis-picolyl moiety (binding site) through a phenyl ring. Pd-II induced opening of the spirolactam ring of the probe with the generation of a prominent pink color. The excellent selectivity of the probe towards Pd-II over Pd-0 or Rh-II ensured its potential utility for the detection of residual palladium contamination in pharma-ceutical drugs and in Pd-catalyzed reactions. The probe showed a ``turn-on'' (bright yellow) fluorescence upon the addition of Pd-II, which made it suitable for the detection of Pd contaminants in mammalian cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soft-decision multiple-symbol differential sphere decoding (MSDSD) is proposed for orthogonal frequency-division multiplexing (OFDM)-aided differential space-time shift keying (DSTSK)-aided transmission over frequency-selective channels. Specifically, the DSTSK signaling blocks are generated by the channel-encoded source information and the space-time (ST) blocks are appropriately mapped to a number of OFDM subcarriers. After OFDM demodulation, the DSTSK signal is noncoherently detected by our soft-decision MSDSD detector. A novel soft-decision MSDSD detector is designed, and the associated decision rule is derived for the DSTSK scheme. Our simulation results demonstrate that an SNR reduction of 2 dB is achieved by the proposed scheme using an MSDSD window size of N-w = 4 over the conventional soft-decision-aided differential detection benchmarker, while communicating over dispersive channels and dispensing with channel estimation (CE).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robotic surgical tools used in minimally invasive surgeries (MIS) require miniaturized and reliable actuators for precise positioning and control of the end-effector. Miniature pneumatic artificial muscles (MPAMs) are a good choice due to their inert nature, high force to weight ratio, and fast actuation. In this paper, we present the development of miniaturized braided pneumatic muscles with an outer diameter of similar to 1.2 mm, a high contraction ratio of about 18%, and capable of providing a pull force in excess of 4 N at a supply pressure of 0.8 MPa. We present the details of the developed experimental setup, experimental data on contraction and force as a function of applied pressure, and characterization of the MPAM. We also present a simple kinematics and experimental data based model of the braided pneumatic muscle and show that the model predicts contraction in length to within 20% of the measured value. Finally, a robust controller for the MPAMs is developed and validated with experiments and it is shown that the MPAMs have a time constant of similar to 10 ms thereby making them suitable for actuating endoscopic and robotic surgical tools.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants emit volatile organic compounds (VOCs) from most parts of their anatomy. Conventionally, the volatiles of leaves, flowers, fruits and seeds have been investigated separately. This review presents an integrated perspective of volatiles produced by fruits and seeds in the context of selection on the whole plant. It suggests that fruit and seed volatiles may only be understood in the light of the chemistry of the whole plant. Fleshy fruit may be viewed as an ecological arena within which several evolutionary games are being played involving fruit VOCs. Fruit odour and colour may be correlated and interact via multimodal signalling in influencing visits by frugivores. The hypothesis of volatile crypsis in the evolution of hard seeds as protection against volatile diffusion and perception by seed predators is reviewed. Current views on the role of volatiles in ant dispersal of seeds or myrmecochory are summarised, especially the suggestion that ants are being manipulated by plants in the form of a sensory trap while providing this service. Plant VOC production is presented as an emergent phenotype that could result from multiple selection pressures acting on various plant parts; the ``plant'' phenotype and VOC profile may receive significant contributions from symbionts within the plant. Viewing the plant as a holobiont would benefit an understanding of the emergent plant phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional solids are prepared from building blocks that are conceptually no larger than a hundred atoms. While van der Waals and dipole-dipole interactions also influence the formation of these materials, stronger interactions, referred to as chemical bonds, play a more decisive role in determining the structures of most solids. Chemical bonds that hold such materials together are said to be ionic, covalent, metallic, dative, or otherwise a combination of these. Solids that utilize semiconductor nanocrystal quantum dots as building units have been demonstrated to exist; however, the interparticle forces in such materials are decidedly not chemical. Here we demonstrate the formation of charge transfer states in a binary quantum dot mixture. Charge is observed to reside in quantum confined states of one of the participating quantum dots. These interactions lead to materials that may be regarded as the nanoscale analog of an ionic solid. The process by which these materials form has interesting parallels to chemical reactions in conventional chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A protease inhibitor from the seeds of Butea monosperma (BmPI) was purified, characterized and studied for its influence on developmental physiology of Helicover-pa armigera. BmPI on two-dimensional separations indicated the presence of a 14 kDa protein with an isoelectric point in the acidic region (pl 5.6). Multiple Sequence Analysis data suggested that the BmPI contains a sequence motif which is conserved in various trypsin and chymotrypsin inhibitors of Kunitz-type. The inhibitor exhibited trypsin inhibitory activity in a broad range of pH (4-10) and temperature (10-80 degrees C). The enzyme kinetic studies revealed BmPI as a competitive inhibitor with a K-i value of 1.2 x 10(-9) M. In vitro studies with BmPI indicated measurable inhibitory activity on total gut proteolytic enzymes of H. armigera (IC(50)2.0 mu g/ml) and bovine trypsin. BmPI supplemented artificial diet caused dose dependent mortality and reduction in growth and weight. The fertility and fecundity of H. armigera, declined whereas the larval-pupal duration of the insect life cycle extended. These detrimental effects on H. armigera suggest the usefulness of BmPl in insect pest management of food crops. (C) 2014 Elsevier Ltd. All rights reserved.