326 resultados para protonic conduction
Resumo:
Au tipped ultranarrow PbS nanorods are synthesized. DFT electronic structure calculations and transport studies show that Au probes modify the nature and energies of PbS nanorod orbitals creating efficient electron conduction channels for enhanced conductance even at low applied bias.
Resumo:
Recently there is an increasing demand and extensive research on high density memories, in particular to the ferroelectric random access memory composed of 1T/1C (1 transistor/1 capacitor) or 2T/2C. FRAM's exhibit fast random acess in read/write mode, non - volatility and low power for good performance. An integration of the ferroelectric on Si is the key importance and in this regard, there had been various models proposed like MFS, MFIS, MFMIS structure etc., Choosing the proper insulator is very essential for the better performance of the device and to exhibit excellent electrical characteristics. ZrTiO4 is a potential candidate because of its excellent thermal stability and lattice match on the Si substrate. SrBi2Ta2O9 and ZrTiO4 thin films were prepared on p - type Si substrate by pulsed excimer laser ablation technique. Optimization of both ZT and SBT thin films in MFS and MFIS structure had been done based on the annealing, oxygen partial pressures and substrate temperatures to have proper texture of the thin films. The dc leakage current, P - E hysteresis, capacitance - voltage and conductance - voltage measurement were carried out. The effect of the frequency dependence on MFIS structure was observed in the C – V curve. It displays a transition of C - V curve from high frequency to low frequency curve on subjection to varied frequencies. Density of interface states has been calculated using Terman and high - low frequency C - V curve. The effect of memory window in the C - V hysteresis were analysed in terms of film thickness and annealing temperatures. DC conduction mechanism were analysed in terms of poole - frenkel, Schottky and space charge limited conduction separately on MFS, MIS structure.
Resumo:
Recently there is an increasing demand and extensive research on high density memories, in particular to the ferroelectric random access memory composed of 1T/1C (1 transistor/1 capacitor) or 2T/2C. FRAM's exhibit fast random acess in read/write mode, non - volatility and low power for good performance. An integration of the ferroelectric on Si is the key importance and in this regard, there had been various models proposed like MFS, MFIS, MFMIS structure etc., Choosing the proper insulator is very essential for the better performance of the device and to exhibit excellent electrical characteristics. ZrTiO4 is a potential candidate because of its excellent thermal stability and lattice match on the Si substrate. SrBi2Ta2O9 and ZrTiO4 thin films were prepared on p - type Si substrate by pulsed excimer laser ablation technique. Optimization of both ZT and SBT thin films in MFS and MFIS structure had been done based on the annealing, oxygen partial pressures and substrate temperatures to have proper texture of the thin films. The dc leakage current, P - E hysteresis, capacitance - voltage and conductance - voltage measurement were carried out. The effect of the frequency dependence on MFIS structure was observed in the C – V curve. It displays a transition of C - V curve from high frequency to low frequency curve on subjection to varied frequencies. Density of interface states has been calculated using Terman and high - low frequency C - V curve. The effect of memory window in the C - V hysteresis were analysed in terms of film thickness and annealing temperatures. DC conduction mechanism were analysed in terms of poole - frenkel, Schottky and space charge limited conduction separately on MFS, MIS structure.
Resumo:
To investigate the role of grain boundaries and other growth related microstructure in manganite films, a scanning tunneling microscope is used to simultaneously probe surface topography and local potential distribution under current flow at nanometer level in films of epitaxial thin films of La0.7Ca0.3MnO3 deposited on single crystal SrTiO3 and NdGaO3 substrate by laser ablation. We have studied two types of films strained and strain relaxed. Thin (50nm) films (strained due to lattice mismatch between substrate and the film) show step growth (unit cell steps) and have very smooth surfaces. Relatively thicker films (strain relaxed, thickness 200nm) do not have these step growths and show rather smooth well connected grains. Charge transport in these films is not uniform on the nanometer level and is accompanied by potential jumps at the internal surfaces. In particular scattering from grain boundaries results in large variations in the local potential resulting in fields as high as 104-105V/cm located near the grain boundaries. We discuss the role of local strain and strain inhomogeneties in determining the current transport in these films and their resistance and magnetoresistivity. In this paper we attempt to correlate between bulk electronic properties with microscopic electronic conduction using scanning tunneling microscopy and scanning tunneling potentiometry.
Resumo:
YMnO3 thin films were grown on an n-type Si substrate by nebulized spray pyrolysis in the metal-ferroelectric-semiconductor (MFS) configuration. The capacitance-voltage characteristics of the film in the MFS structure exhibit hysteretic behaviour consistent with the polarization charge switching direction, with the memory window decreasing with increase in temperature. The density of the interface states decreases with increasing annealing temperature. Mapping of the silicon energy band gap with the interface states has been carried out. The leakage current, measured in the accumulation region, is lower in well-crystallized thin films and obeys a space-charge limited conduction mechanism. The calculated activation energy from the dc leakage current characteristics of the Arrhenius plot reveals that the activation energy corresponds to oxygen vacancy motion.
Resumo:
We report unipolar resistive switching in ultrathin films of chemically produced graphene (reduced graphene oxide) and multiwalled carbon nanotubes. The two-terminal devices with yield >99% are made at room temperature by forming continuous films of graphene of thickness similar to 20 nm on indium tin oxide coated glass electrode, followed by metal (Au or Al) deposition on the film. These memory devices are nonvolatile, rewritable with ON/OFF ratios up to similar to 10(5) and switching times up to 10 mu s. The devices made of MWNT films are rewritable with ON/OFF ratios up to similar to 400. The resistive switching mechanism is proposed to be nanogap formation and filamentary conduction paths. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The ferroelectric Pb(Zr0.53Ti0.47)O-3 (PZT) and SrBi2Ta2O9 (SBT) thin films were prepared by laser ablation technique. The dielectric analysis, capacitance-voltage, ferroelectric hysteresis and DC leakage current measurements were performed before and after 50 MeV Li3+ ion irradiation. In both thin films, the irradiation produced some amount of amorphisation, considerable degradation in the ferroelectric properties and change in DC conductivity. On irradiation of these thin films, the phase transition temperature [T-c] of PZT decreased considerably from 628 to 508 K, while SBT exhibited a broad and diffuse transition with its T-c decreased from 573 to 548 K. The capacitance-voltage curve at 100 kHz showed a double butterfly loop with a large decrease in the capacitance and switching voltage. There was decrease in the ferroelectric hysteresis loop, remanant polarisation and coercive field. After annealing at a temperature of 673 K for 10 min while PZT partially regained the ferroelectric properties, while SBT did not. The DC conductivity measurements showed a shift in the onset of non-linear conduction region in irradiated SBT. The degradation of ferroelectric properties of the irradiated thin films is attributed to the irradiation-induced partial amorphization and the pinning of the ferroelectric domains by trapped charges. The regaining of properties after annealing is attributed to the thermal annealing of the defects generated during the irradiation. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Structural transformation and ionic transport properties are investigated on wet-chemically synthesized La1-xMnO3 (X=0.0-0.18) compositions. Powders annealed in oxygen/air at 1000-1080 K exhibit cubic symmetry and transform to rhombohedral on annealing at 1173-1573 K in air/oxygen. Annealing above 1773 K in air or in argon/helium at 1473 K stabilized distorted rhombohedral or orthorhombic symmetry. Structural transformations are confirmed from XRD and TEM studies. The total conductivity of sintered disks, measured by four-probe technique, ranges from 5 S cm(-1) at 298 K to 105 S cm(-1) at 1273 K. The ionic conductivity measured by blocking electrode technique ranges from 1.0X10(-6) S cm(-1) at 700 K to 2.0X10(-3) S cm(-1) at 1273 K. The ionic transference number of these compositions ranges from 3.0X10(-5) to 5.0X10(-5) at 1273 K. The activation energy deduced from experimental data for ionic conduction and ionic migration is 1.03-1.10 and 0.80-1.00 eV, respectively. The activation energy of formation, association and migration of vacancies ranges from 1.07 to 1.44 eV. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The role played by defects in bringing out n-type conduction in Ge20Se80-xBix and Ge20Se70-xBixTe10 glasses is using investigated photoluminescence (PL) spectroscopy. It was found that for both the systems, the compositions at lower Bi content exhibit luminescence with fine features associated while the compositions that show n-type conduction do not exhibit luminescence. The identification of the associated fine features, carried out by deconvoluting the experimental spectra, reveals that Bi addition brings out a relative diminishing in D+ defects as compared to D- ones. The study gives an overall indication for the role played by native defects in bringing out n-type conduction in Bi-doped glasses.
Transient analysis in Al-doped barium strontium titanate thin films grown by pulsed laser deposition
Resumo:
Thin films of (Ba0.5Sr0.5)TiO3 (BST) with different concentrations of Al doping were grown using a pulsed laser deposition technique. dc leakage properties were studied as a function of Al doping level and compared to that of undoped BST films. With an initial Al doping level of 0.1 at. % which substitutes Ti in the lattice site, the films showed a decrease in the leakage current, however, for 1 at. % Al doping level the leakage current was found to be relatively higher. Current time measurements at elevated temperatures on 1 at. % Al doped BST films revealed space-charge transient type characteristics. A complete analysis of the transient characteristics was carried out to identify the charge transport process through variation of applied electric field and ambient temperature. The result revealed a very low mobility process comparable to ionic motion, and was found responsible for the observed feature. Calculation from ionic diffusivity and charge transport revealed a conduction process associated with an activation energy of around 1 eV. The low mobility charge carriers were identified as oxygen vacancies in motion under the application of electric field. Thus a comprehensive understanding of the charge transport process in highly acceptor doped BST was developed and it was conclusive that the excess of oxygen vacancies created by intentional Al doping give rise to space-charge transient type characteristics. © 2001 American Institute of Physics.
Resumo:
InN layers were directly grown on Ge substrate by plasma-assisted molecular beam epitaxy (PAMBE). The valence band offset (VBO) of wurtzite InN/Ge heterojunction is determined by X-ray photoemission spectroscopy (XPS). The valence band of Ge is found to be 0.18 +/- 0.04 eV above that of InN and a type-II heterojunction with a conduction band offset (CBO) of similar to 0.16 eV is found. The accurate determination of the VBO and CBO is important for the design of InN/Ge based electronic devices. (C) 2011 Elsevier B.A. All rights reserved.
Solute solute and solvent solute interactions in solid solutions of Cu+Sn, Au+Sn and Cu+Au+Sn alloys
Resumo:
The chemical potentials of tin in its α-solid solutions with Cu, Au and Cu + Au alloys have been measured using a gas-solid equilibration technique. The variation of the excess chemical potential of tin with its composition in the alloy is related to the solute-solute repulsive interaction, while the excess chemical potential at infinite dilution of the solute is a measure of solvent-solute interaction energies. It is shown that solute-solute interaction is primarily determined by the concentration of (s + p) electrons in the conduction band, although the interaction energies are smaller than those predicted by either the rigid band model or calculation based on Friedel oscillations in the potential function. Finally, the variation of the solvent-solute interaction with solvent composition in the ternary system can be accounted for in terms of a quasi-chemical treatment which takes into account the clustering of the solvent atoms around the solute.
Resumo:
A critical revi<:w of the possibilities of measuring the ~artlal pressure of sulfur using solid state galvanic cells )'n;;cd on AgI, C" , B-alumina, CaO-Zr02' Na2S04-I and doped ;:":;, ,,,Ilil "Iltl ,,11: auxiliary "jectrodes are presentlOu. SOIll..., df tllc!iL' sYHtcmH h,}vu inherent limltntlol1$ when <:xl'o" ...d to environments contilining both oxygen and sulfur. Electrode polarization due to electronic conduction in the solid electrolyte is a significant factor limiting the ;lC'e,"'acy of isotlwrm:l1 cell",. The electrochemical flux of{lit' !'\)ndlwl Ill}: Ion LhnHO',h tht' ('!('ctrojyt(~ C:Ul },(,! llIinlnliz(,{j pfUjJL!f cell. dL:~) i.t',11. Noni!:iot.herm~ll cells \.Jlth temperaLure compensated reference electrodes have a number of advantages over thC'ir isothermal counterparts.
Resumo:
The open circuit potentials of the galvanic cell,Pt (or Au)¦(Ar + H2S + H2)primeparCaS + ZrO2(CaO)par (Ar + H2S+ H2)Prime£t (or Au) has been measured in the temperature range 1000 to 1660 K and PH2S:PH 2 ratios from 1.73×10–5 to 2.65×10–1. The solid electrolyte consists of a dispersion of calcium sulphide in a matrix of calcia-stabilized zirconia. The surface of the electrolyte is coated with a thin layer of calcium sulphide to prevent the formation of water vapour by reaction of hydrogen sulphide with calcium oxide or zirconia present in the electrolyte. The use of a lsquopoint electrodersquo with a catalytically active tip was necessary to obtain steady emfs. At low temperatures and high sulphur potentials the emfs agreed with the Nernst equation. Deviations were observed at high temperatures and low sulphur potentials, probably due to the onset of significant electronic conduction in the oxide matrix of the electrolyte. The values of oxygen and sulphur potentials at which the electronic conductivity is equal to ionic conductivity in the two-phase electrolyte have been evaluated from the emf response of the cell. The sulphide-oxide electrolyte is unsuitable for sulphur potential measurements in atmospheres with high oxygen potentials, where oxidation of calcium sulphide may be expected.
Resumo:
Two solid state galvanic cells:Pt, Ni + Ni2Si04 + Si02/(Y203)Zr02/Ni + + NiO, Pt (1) and Pt, Ni + NizSiOj + Si02/CaF2/Ni + + NiO, Pt (11) have been employed for the determination of the Gibbs' energy of formation of nickel orthosilicate(Ni2Si04) from nickel oxide and quartz. The emf of cell (I) was reversible and reproducible in the temperature range 925 to 1375K whereas emf of cell (11) drifted with time and changed polarity. From the results of cell (I), the Gibbs' energy of formation of nickel silicate is obtained as,2Ni0 (r.s.) + Si02 (quartz) + Ni2Si04 (olivine)Gibbs' energy of formation of the spinel form of Ni2Si04 is obtained by combining the data for olivine obtained in this study with high pressure data on olivine to spinel transition reported in the literature. The complex time dependence of the emf of cell (11) can be rationalised on the basis of formation of calcium silicates from calcium oxide, generally present as an impurity in the calcium fluoride electrolyte, and silica. The emf of cell (11) is shown to be the function of the activity of calcium oxide at the electrolyte/ electrode interface. The results provide strong evidence against the recent suggestion of mixed anionic conduction in calcium fluoride.