250 resultados para non-derogation
Resumo:
We propose a compact model for small signal non quasi static analysis of long channel symmetric double gate MOSFET The model is based on the EKV formalism and is valid in all regions of operation and thus suitable for RF circuit design Proposed model is verified with professional numerical device simulator and excellent agreement is found well beyond the cut-off frequency
Resumo:
In the present study, an attempt was made to study the acute and sub-acute toxicity profile of G3-COOH Poly (propyl ether imine) PETIM] dendrimer and its use as a carrier for sustained delivery of model drug ketoprofen. Drug-dendrimer complex was prepared and characterized by FTIR, solubility and in vitro drug release study. PETIM dendrimer was found to have significantly less toxicity in A541 cells compared to Poly amido amine (PAMAM) dendrimer. Further, acute and 28 days sub-acute toxicity measurement in mice showed no mortality, hematological, biochemical or histopathological changes up to 80 mg/kg dose of PETIM dendrimer. The results of study demonstrated that G3-COOH PETIM dendrimer can be used as a safe and efficient vehicle for sustained drug delivery. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
New methods involving the manipulation of fundamental wavefronts (e.g., plane and spherical) with simple optical components such as pinholes and spherical lenses have been developed for the fabrication of elliptic, hyperbolic and conical holographic zone plates. Also parabolic zone plates by holographic techniques have been obtained for the first time. The performance behaviour of these zone plates has been studied. Further a phenomenological explanation is offered for the observed improved fringe contrast obtained with a spherical reference wave.
Resumo:
The torsional potential functions Vt(φ) and Vt(ψ) around single bonds N–Cα and Cα-C, which can be used in conformational studies of oligopeptides, polypeptides and proteins, have been derived, using crystal structure data of 22 globular proteins, fitting the observed distribution in the (φ, ψ)-plane with the value of Vtot(φ, ψ), using the Boltzmann distribution. The averaged torsional potential functions, obtained from various amino acid residues in l-configuration, are Vt(φ) = – 1.0 cos (φ + 60°); Vt(ψ) = – 0.5 cos (ψ + 60°) – 1.0 cos (2ψ + 30°) – 0.5 cos (3ψ + 30°). The dipeptide energy maps Vtot(φ, ψ) obtained using these functions, instead of the normally accepted torsional functions, were found to explain various observations, such as the absence of the left-handed alpha helix and the C7 conformation, and the relatively high density of points near the line ψ = 0°. These functions, derived from observational data on protein structures, will, it is hoped, explain various previously unexplained facts in polypeptide conformation.
Resumo:
Any pair of non-adjacent vertices forms a non-edge in a graph. Contraction of a non-edge merges two non-adjacent vertices into a single vertex such that the edges incident on the non-adjacent vertices are now incident on the merged vertex. In this paper, we consider simple connected graphs, hence parallel edges are removed after contraction. The minimum number of nodes whose removal disconnects the graph is the connectivity of the graph. We say a graph is k-connected, if its connectivity is k. A non-edge in a k-connected graph is contractible if its contraction does not result in a graph of lower connectivity. Otherwise the non-edge is non-contractible. We focus our study on non-contractible non-edges in 2-connected graphs. We show that cycles are the only 2-connected graphs in which every non-edge is non-contractible. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Non-Boussinesq conjugate natural convection in a vertical annulus with a centrally located vertical heat generating rod is studied numerically, taking into account variable transport properties. Results are presented for maximum solid temperatures, average Nusselt numbers and average pressure. In general, the Boussinesq model predicts higher temperatures in the solid and lower average Nusselt numbers on the inner and outer boundaries. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The nonsimilar non-Darcy mixed convection flow about a heated horizontal surface in a saturated porous medium has been studied when the surface temperature is a power function of distance (Tw = T∞ ± Axλ). The analysis is performed for the cases of parallel and stagnation flows with favourable induced pressure gradient. The partial differential equations governing the flow have been solved numerically using the Keller box method. The heat transfer is enhanced due to the buoyancy parameter and wall temperature, but the non-Darcy parameter reduces it. For non-Darcy flow, the similarity solution exists only for the case of parallel flow.
Resumo:
The analysis of steady laminar forced convection boundary layer of power-law non-Newtonian fluids on a continuously moving cylinder with the surface maintained at a uniform temperature or uniform heat flux is presented. Of interest were the effects of power-law viscosity index, transverse curvature, generalized Prandtl number and streamwise coordinate on the local Nusselt number as well as on the velocity and temperature profiles. The two thermal boundary conditions yield quite similar results. Comparison of the calculated results with available series expansion solutions for a Newtonian fluid shows a very good performance of the present numerical procedure.
Resumo:
In β-AgI and β-Ag3SI the ionic conductivity has been measured at frequencies from 1kHz to 2.6 GHz and from 10 MHz to 10 THz, respectively. In both phases we observe a conductivity increase of some orders of magnitude, due to localized types of motion of the silver ions. In β-AgI the increase is found at about 1 MHz and reflects cooperative back-and-forth hopping processes between adjacent tetrahedral sites. In β-Ag3SI the phenomenon occurs at microwave frequencies. Here it is caused by a non-hopping, non-periodic localized Ag+-motion within shallow potentials.
Resumo:
Non-linear resistors having current-limiting capabilities at lower field strengths, and voltage-limiting characteristics (varistors) at higher field strengths, were prepared from sintered polycrystalline ceramics of (Ba0.6Sr0.4)(Ti0.97Zr0.03)O3+0.3 at % La, and reannealed after painting with low-melting mixtures of Bi2O3 + PbO +B2O3. These types of non-linear characteristics were found to depend upon the non-uniform diffusion of lead and the consequent distribution of Curie points (T c) in these perovskites, resulting in diffuse phase transitions. Tunnelling of electrons across the asymmetric barrier at tetragonak-cubic interfaces changes to tunnelling across the symmetric barrier as the cubic phase is fully stabilized through Joule heating at high field strengths. Therefore the current-limiting characteristics switch over to voltage-limiting behaviour because tunnelling to acceptor-type mid-bandgap states gives way to band-to-band tunnelling.
Resumo:
Molecular dynamics simulations on Xe in NaY and Ar in NaCaA zeolite are reported. Rates of cage-to-cage crossovers in the two zeolites exhibit trends which are contrary to that expected from geometrical considerations. The results suggest the important role of the sorbate-zeolite interactions in determining the molecular sieve properties of zeolites for small sized sorbates. The results are explained in terms of the barrier height for cage-to-cage crossover in the two zeolites.