259 resultados para fiber matrix


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acoustic modeling using mixtures of multivariate Gaussians is the prevalent approach for many speech processing problems. Computing likelihoods against a large set of Gaussians is required as a part of many speech processing systems and it is the computationally dominant phase for LVCSR systems. We express the likelihood computation as a multiplication of matrices representing augmented feature vectors and Gaussian parameters. The computational gain of this approach over traditional methods is by exploiting the structure of these matrices and efficient implementation of their multiplication.In particular, we explore direct low-rank approximation of the Gaussian parameter matrix and indirect derivation of low-rank factors of the Gaussian parameter matrix by optimum approximation of the likelihood matrix. We show that both the methods lead to similar speedups but the latter leads to far lesser impact on the recognition accuracy. Experiments on a 1138 word vocabulary RM1 task using Sphinx 3.7 system show that, for a typical case the matrix multiplication approach leads to overall speedup of 46%. Both the low-rank approximation methods increase the speedup to around 60%, with the former method increasing the word error rate (WER) from 3.2% to 6.6%, while the latter increases the WER from 3.2% to 3.5%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When document corpus is very large, we often need to reduce the number of features. But it is not possible to apply conventional Non-negative Matrix Factorization(NMF) on billion by million matrix as the matrix may not fit in memory. Here we present novel Online NMF algorithm. Using Online NMF, we reduced original high-dimensional space to low-dimensional space. Then we cluster all the documents in reduced dimension using k-means algorithm. We experimentally show that by processing small subsets of documents we will be able to achieve good performance. The method proposed outperforms existing algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Etched Fiber Bragg Grating (EFBG) sensors are attractive from the point of the inherently high multiplexing ability of fiber based sensors. However, the strong dependence of the sensitivity of EFBG sensors on the fiber diameter requires robust methods for calibration when used for distributed sensing in a large array format. Using experimental data and numerical modelling, we show that knowledge of the wavelength shift during the etch process is necessary for high-fidelity calibration of EFBG arrays. However as this approach requires the monitoring of every element of the sensor array during etching, we also proposed and demonstrated a calibration scheme using data from bulk refractometry measurements conducted post-fabrication without needing any information about the etching process. Although this approach is not as precise as the first one, it may be more practical as there is no requirement to monitor each element of the sensor array. We were able to calibrate the response of the sensors to within 3% with the approach using information acquired during etching and to within 5% using the post-fabrication bulk refractometry approach in spite of the sensitivities of the array element differing by more than a factor of 4. These two approaches present a tradeoff between accuracy and practicality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While Fiber Bragg Grating (FBG) sensors have been extensively used for temperature and strain sensing, clad etched FBGs (EFBGs) have only recently been explored for refractive index sensing. Prior literature in EFBG based refractive index sensing predominantly deals with bulk refractometry only, where the Bragg wavelength shift of the sensor as a function of the bulk refractive index of the sample can be analytically modeled, unlike the situation for adsorption of molecular thin films on the sensor surface. We used a finite element model to calculate the Bragg wavelength change as a function of thickness and refractive index of the adsorbing molecular layer and compared the model with the real-time, in-situ measurement of electrostatic layer-by-layer (LbL) assembly of weak polyelectrolytes on the silica surface of EFBGs. We then used this model to calculate the layer thickness of LbL films and found them to be in agreement with literature. Further, we used this model to arrive at a realistic estimate of the limit of detection of EFBG sensors based on nominal measurement noise levels in current FBG interrogation systems and found that sufficiently thinned EFBGs can provide a competitive platform for real-time measurement of molecular interactions while simultaneously leveraging the high multiplexing capabilities of fiber optics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sensing of carbon dioxide (CO2) at room temperature, which has potential applications in environmental monitoring, healthcare, mining, biotechnology, food industry, etc., is a challenge for the scientific community due to the relative inertness of CO2. Here, we propose a novel gas sensor based on clad-etched Fiber Bragg Grating (FBG) with polyallylamine-amino-carbon nanotube coated on the surface of the core for detecting the concentrations of CO2 gas at room temperature, in ppm levels over a wide range (1000 ppm-4000 ppm). The limit of detection observed in polyallylamine-amino-carbon nanotube coated core-FBG has been found to be about 75 ppm. In this approach, when CO2 gas molecules interact with the polyallylamine-amino-carbon nanotube coated FBG, the effective refractive index of the fiber core changes, resulting in a shift in Bragg wavelength. The experimental data show a linear response of Bragg wavelength shift for increase in concentration of CO2 gas. Besides being reproducible and repeatable, the technique is fast, compact, and highly sensitive. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we report a novel hydrogel functionalized optical Fiber Bragg Grating (FBG) sensor based on chemo-mechanical-optical sensing, and demonstrate its specific application in pH activated process monitoring. The sensing mechanism is based on the stress due to ion diffusion and polymer phase transition which produce strain in the FBG. This results in shift in the Bragg wavelength which is detected by an interrogator system. A simple dip coating method to coat a thin layer of hydrogel on the FBG has been established. The gel consists of sodium alginate and calcium chloride. Gel formation is observed in real-time by continuously monitoring the Bragg wavelength shift. We have demonstrated pH sensing in the range of pH of 2 to 10. Another interesting phenomenon is observed by swelling and deswelling of FBG functionalized with hydrogel by a sequence of alternate dipping between acidic and base solutions. It is observed that the Bragg wavelength undergoes reversible and repeatable pH dependent switching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a blood pressure evaluation methodology by recording the radial arterial pulse waveform in real time using a fiber Bragg grating pulse device (FBGPD). Here, the pressure responses of the arterial pulse in the form of beat-to-beat pulse amplitude and arterial diametrical variations are monitored. Particularly, the unique signatures of pulse pressure variations have been recorded in the arterial pulse waveform, which indicate the systolic and diastolic blood pressure while the patient is subjected to the sphygmomanometric blood pressure examination. The proposed method of blood pressure evaluation using FBGPD has been validated with the auscultatory method of detecting the acoustic pulses (Korotkoff sounds) by an electronic stethoscope. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wavelet coefficients based on spatial wavelets are used as damage indicators to identify the damage location as well as the size of the damage in a laminated composite beam with localized matrix cracks. A finite element model of the composite beam is used in conjunction with a matrix crack based damage model to simulate the damaged composite beam structure. The modes of vibration of the beam are analyzed using the wavelet transform in order to identify the location and the extent of the damage by sensing the local perturbations at the damage locations. The location of the damage is identified by a sudden change in spatial distribution of wavelet coefficients. Monte Carlo Simulations (MCS) are used to investigate the effect of ply level uncertainty in composite material properties such as ply longitudinal stiffness, transverse stiffness, shear modulus and Poisson's ratio on damage detection parameter, wavelet coefficient. In this study, numerical simulations are done for single and multiple damage cases. It is observed that spatial wavelets can be used as a reliable damage detection tool for composite beams with localized matrix cracks which can result from low velocity impact damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detection of petroleum leakages in pipelines and storage tanks is a very important as it may lead to significant pollution of the environment, accidental hazards, and also it is a very important fuel resource. Petroleum leakage detection sensor based on fiber optics was fabricated by etching the fiber Bragg grating (FBG) to a region where the total internal reflection is affected. The experiment shows that the reflected Bragg's wavelength and intensity goes to zero when etched FBG is in air and recovers Bragg's wavelength and intensity when it is comes in contact with petroleum or any external fluid. This acts as high sensitive, fast response fluid optical switch in liquid level sensing, petroleum leakage detection etc. In this paper we present our results on using this technique in petroleum leakage detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have demonstrated novel concept of utilizing the photomechanical actuation in carbon nanotubes (CNTs) to tune and reversibly switch the Bragg wavelength. When fiber Bragg grating coated with CNTs (CNT-FBG) is exposed externally to a wide range of optical wavelengths, e. g., ultraviolet to infrared (0.2-200 mu m), a strain is induced in the CNTs which alters the grating pitch and refractive index in the CNT-FBG system resulting in a shift in the Bragg wavelength. This novel approach will find applications in telecommunication, sensors and actuators, and also for real time monitoring of the photomechanical actuation in nanoscale materials. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we present the discovery of a metallo-organogel derived from a Tb3+ salt and sodium deoxycholate (NaDCh) in methanol. The gel was made luminescent through sensitization of Tb3+ by doping with 2,3-dihydroxynaphthalene (DHN) in micromolar concentrations. Rheological measurements of the mechanical properties of the organogel confirmed the characteristics of a true gel. Significant quenching of Tb3+ luminescence was observed in the deoxycholate gel matrix by 2,4,7-trinitrofluorenone (TNF), but not by several other polynitro aromatics. Microscopic studies (AFM, TEM and SEM) revealed a highly entangled fibrous network. The xerogels retained luminescent properties suggesting the possibility for application in coatings, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims at providing an effective parking management system by reducing the drivers' searching time for vacant car-parking space, in turn improving the traffic flow in the car park areas. This is achieved by the use of Fiber Bragg Grating Sensor (FBG) sensor instrumentation in vehicle parking management system. Present work involves embedding an array of FBG sensors underground in the parking space, then determining the strain changes on the FBG sensor due to load applied by the vehicle parked in the parking space, occupancy of the parking space is determined. To validate the FBG sensor parking management system, three most common cases have been considered. This closed loop FBG parking management system can give real-time feed-back to space-guidance display board helping the driver in maneuvering the vehicle to the appropriate parking space. The proposed technique offers optimized usage of parking space for the various segments of cars and also facilitates in a conjoined automated billing system, as compared to conventional method of parking systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, we report spectroscopic studies of laser-induced plasmas produced by focusing the second harmonic (532nm) of a Nd:YAG laser onto the laminar flow of a liquid containing chromium. The plasma temperature is determined from the coupled Saha-Boltzmann plot and the electron density is evaluated from the Stark broadening of an ionic line of chromium Cr(II)] at 267.7nm. Our results reveal a decrease in plasma temperature with an increase in Cr concentration up to a certain concentration level; after that, it becomes approximately constant, while the electron density increases with an increase in analyte (Cr) concentration in liquid matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an ab initio design and development of a novel Fiber Bragg Grating (FBG) sensor based strain sensing plate for the measurement of plantar strain distribution in human foot. The primary aim of this work is to study the feasibility of usage of FBG sensors in the measurement of plantar strain in the foot; in particular, to spatially resolve the strain distribution in the foot at different regions such as fore-foot, mid-foot and hind-foot. This study also provides a method to quantify and compare relative postural stability of different subjects under test; in addition, traditional accelerometers have been used to record the movements of center of gravity (second lumbar vertebra) of the subject and the results obtained have been compared against the outcome of the postural stability studies undertaken using the developed FBG plantar strain sensing plate. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fracture characteristics of Al-Si based eutectic alloy are investigated in the unmodified and modified conditions under compression. The investigations are carried out at different strain rates and temperatures. Fracture of the alloy starts with eutectic Si particle fracture and modification plays an important role in particle fracture. The fraction of fractured particles is found to be always lesser in the modified condition than in the unmodified condition. Particle fracture increases with increase in strain. It is found that the Si particle fracture shows an increase with increase in strain rate and decreases with increase in temperature at 10% strain. Large and elongated particles show a greater tendency for fracture in the unmodified and modified conditions. Particle orientation plays an important role on fracture and the cracks are found to occur almost in a direction normal to the tensile strain imposed upon the particles by the deforming matrix in the unmodified alloy. The modified alloy shows a random distribution of fractured particles and crack orientation. The criteria of fracture based on dislocation pile-up mechanism and fiber loading explain the observed difference in particle fracture characteristics due to modification. The particle fracture for the modified alloy is also discussed in terms of Weibull statistics and the existing models of dispersion hardening. Particle/matrix interface decohesion is observed at higher strain rates and temperatures in the modified alloy. Dendritic rotation of 10 degrees is also observed at higher strain rates, which can increase the amount of particle fracture. (C) 2013 Elsevier B.V. All rights reserved.