211 resultados para Triple-helix conformation
Resumo:
G.N. Ramachandran is among the founding fathers of structural molecular biology. He made pioneering contributions in computational biology, modelling and what we now call bioinformatics. The triple helical coiled coil structure of collagen proposed by him forms the basis of much of collagen research at the molecular level. The Ramachandran map remains the simplest descriptor and tool for validation of protein structures. He has left his imprint on almost all aspects of biomolecular conformation. His contributions in the area of theoretical crystallography have been outstanding. His legacy has provided inspiration for the further development of structural biology in India. After a pause, computational biology and bioinformatics are in a resurgent phase. One of the two schools established by Ramachandran pioneered the development of macromolecular crystallography, which has now grown into an important component of modern biological research in India. Macromolecular NMR studies in the country are presently gathering momentum. Structural biology in India is now poised to again approach heights of the kind that Ramachandran conquered more than a generation ago.
Resumo:
A regular secondary structure is described by a well defined set of values for the backbone dihedral angles (phi,psi and omega) in a polypeptide chain. However in real protein structures small local variations give rise to distortions from the ideal structures, which can lead to considerable variation in higher order organization. Protein structure analysis and accurate assignment of various structural elements, especially their terminii, are important first step in protein structure prediction and design. Various algorithms are available for assigning secondary structure elements in proteins but some lacunae still exist. In this study, results of a recently developed in-house program ASSP have been compared with those from STRIDE, in identification of alpha-helical regions in both globular and membrane proteins. It is found that, while a combination of hydrogen bond patterns and backbone torsional angles (phi-psi) are generally used to define secondary structure elements, the geometry of the C-alpha atom trace by itself is sufficient to define the parameters of helical structures in proteins. It is also possible to differentiate the various helical structures by their C-alpha trace and identify the deviations occurring both at mid-positions as well as at the terminii of alpha-helices, which often lead to occurrence of 3(10) and pi-helical fragments in both globular and membrane proteins.
Resumo:
The Ramachandran map clearly delineates the regions of accessible conformational (phi-) space for amino acid residues in proteins. Experimental distributions of phi, values in high-resolution protein structures, reveal sparsely populated zones within fully allowed regions and distinct clusters in apparently disallowed regions. Conformational space has been divided into 14 distinct bins. Residues adopting these relatively rare conformations are presented and amino acid propensities for these regions are estimated. Inspection of specific examples in a completely arid, fully allowed region in the top left quadrant establishes that side-chain and backbone interactions may provide the energetic compensation necessary for populating this region of phi- space. Asn, Asp, and His residues showed the highest propensities in this region. The two distinct clusters in the bottom right quadrant which are formally disallowed on strict steric considerations correspond to the gamma turn (C7 axial) conformation (Bin 12) and the i + 1 position of Type II turns (Bin 13). Of the 516 non-Gly residues in Bin 13, 384 occupied the i + 1 position of Type II turns. Further examination of these turn segments revealed a high propensity to occur at the N-terminus of helices and as a tight turn in hairpins. The strand-helix motif with the Type II turn as a connecting element was also found in as many as 57 examples. Proteins 2014; 82:1101-1112. (c) 2013 Wiley Periodicals, Inc.
Resumo:
The crystal and molecular structures of the potential antidepressant drug fenobam and its derivatives are examined in terms of the preferred form among the two possible tautomeric structures. In this study, chemical derivatization has been utilized as a means to ``experimentally simulate'' the tautomeric preference and conformational variability in fenobam. Eight new derivatives of fenobam have been synthesized, and structural features have been characterized by single-crystal X-ray diffraction and NMR spectroscopy. The specific tautomeric preference found in all of these compounds and their known crystal forms have been construed in terms of the stabilizing intramolecular N-H center dot center dot center dot O and N-H center dot center dot center dot S hydrogen bonding. The hierarchy of intramolecular hydrogen bonds evidenced as the preference of the C-H center dot center dot center dot O hydrogen bond over C-H center dot center dot center dot N and that of the C-H center dot center dot center dot N hydrogen bond over C-H center dot center dot center dot S explains the two distinct conformations adopted by fenobam and thiofenobam derivatives. The relative energy values of different molecular conformations have been calculated and compared.
Resumo:
One of the most-studied signals for physics beyond the standard model in the production of gauge bosons in electron-positron collisions is due to the anomalous triple gauge boson couplings in the Z(gamma) final state. In this work, we study the implications of this at the ILC with polarized beams for signals that go beyond traditional anomalous triple neutral gauge boson couplings. Here we report a dimension-8 CP-conserving Z(gamma)Z vertex that has not found mention in the literature. We carry out a systematic study of the anomalous couplings in general terms and arrive at a classification. We then obtain linear-order distributions with and without CP violation. Furthermore, we place the study in the context of general BSM interactions represented by e(+)e(-)Z(gamma) contact interactions. We set up a correspondence between the triple gauge boson couplings and the four-point contact interactions. We also present sensitivities on these anomalous couplings, which will be achievable at the ILC with realistic polarization and luminosity.
Resumo:
Close-packed helices with mixed hydrogen bond directionality are unprecedented in the structural chemistry of alpha-polypeptides. While NMR studies in solution state provide strong evidence for the occurrence of mixed helices in (beta beta)(n) and (alpha beta)(n) sequences, limited information is currently available in crystals. The peptide structures presented show the occurrence of C-11/C-9 helices in (alpha beta)(n) peptides. Transitions between C-11 and C-11/C-9 helices are observed upon varying the alpha-amino acid residue.
Resumo:
-helices are amongst the most common secondary structural elements seen in membrane proteins and are packed in the form of helix bundles. These -helices encounter varying external environments (hydrophobic, hydrophilic) that may influence the sequence preferences at their N and C-termini. The role of the external environment in stabilization of the helix termini in membrane proteins is still unknown. Here we analyze -helices in a high-resolution dataset of integral -helical membrane proteins and establish that their sequence and conformational preferences differ from those in globular proteins. We specifically examine these preferences at the N and C-termini in helices initiating/terminating inside the membrane core as well as in linkers connecting these transmembrane helices. We find that the sequence preferences and structural motifs at capping (Ncap and Ccap) and near-helical (N' and C') positions are influenced by a combination of features including the membrane environment and the innate helix initiation and termination property of residues forming structural motifs. We also find that a large number of helix termini which do not form any particular capping motif are stabilized by formation of hydrogen bonds and hydrophobic interactions contributed from the neighboring helices in the membrane protein. We further validate the sequence preferences obtained from our analysis with data from an ultradeep sequencing study that identifies evolutionarily conserved amino acids in the rat neurotensin receptor. The results from our analysis provide insights for the secondary structure prediction, modeling and design of membrane proteins. Proteins 2014; 82:3420-3436. (c) 2014 Wiley Periodicals, Inc.
Resumo:
The structural effects of a representative disallowed conformation of Aib on the 3(10)-helical fold of an octapeptidomimetic are explored. The 1D (H-1, C-13) & 2D NMR, FT-IR and CD data reveal that the octapeptide 1, adopts a 3(10)-helical conformation in solution, as it does in its crystal structure. The C-terminal methyl carboxylate (CO2Me) of 1 was modified into an 1,3-oxazine (Oxa) functional group in the peptidomimetic 2. This modification results in the stabilization of the backbone of the C-terminal Aib (Aib*-Oxa) of 2, in a conformation (phi, =180, 0) that is natively disallowed to Aib. Consequent to the presence of this natively disallowed conformation, the 3(10)-helical fold is not disrupted in the body of the peptidomimetic 2. But the structural distortions that do occur in 2 are primarily in residues in the immediate vicinity of the natively disallowed conformation, rather than in the whole peptide body. Non-native electronic effects resulting from modifications in backbone functional groups can be at the origin of stabilizing residues in natively disallowed conformations. (c) 2014 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 104: 21-36, 2015.
Resumo:
We performed Gaussian network model based normal mode analysis of 3-dimensional structures of multiple active and inactive forms of protein kinases. In 14 different kinases, a more number of residues (1095) show higher structural fluctuations in inactive states than those in active states (525), suggesting that, in general, mobility of inactive states is higher than active states. This statistically significant difference is consistent with higher crystallographic B-factors and conformational energies for inactive than active states, suggesting lower stability of inactive forms. Only a small number of inactive conformations with the DFG motif in the ``in'' state were found to have fluctuation magnitudes comparable to the active conformation. Therefore our study reports for the first time, intrinsic higher structural fluctuation for almost all inactive conformations compared to the active forms. Regions with higher fluctuations in the inactive states are often localized to the aC-helix, aG-helix and activation loop which are involved in the regulation and/or in structural transitions between active and inactive states. Further analysis of 476 kinase structures involved in interactions with another domain/protein showed that many of the regions with higher inactive-state fluctuation correspond to contact interfaces. We also performed extensive GNM analysis of (i) insulin receptor kinase bound to another protein and (ii) holo and apo forms of active and inactive conformations followed by multi-factor analysis of variance. We conclude that binding of small molecules or other domains/proteins reduce the extent of fluctuation irrespective of active or inactive forms. Finally, we show that the perceived fluctuations serve as a useful input to predict the functional state of a kinase.
Autoinhibitory mechanism and activity-related structural changes in a mycobacterial adenylyl cyclase
Resumo:
An adenylyl cyclase from Mycobacterium avium, Mal 120, is a functional orthologue of a pseudogene Rv1120c from Mycobacterium tuberculosis. We report the crystal structure of Mal 120 in a monomeric form and its truncated construct as a dimer. Mal 120 exists as a monomer in solution and crystallized as a monomer in the absence of substrate or inhibitor. An additional alpha-helix present at the N-terminus of the monomeric structure blocks the active site by interacting with the substrate binding residues and occupying the dimer interface region. However, the enzyme has been found to be active in solution, indicating the movement of the helix away from the interface to facilitate the formation of active dimers in conditions favourable for catalysis. Thus, the N-terminal helix of Ma1120 keeps the enzyme in an autoinhibited state when it is not active. Deletion of this helix enabled us to crystallize the molecule as an active homodimer in the presence of a P-site inhibitor 2',5'-dideoxy-3'-ATP, or pyrophosphate along with metal ions. The substrate specifying lysine residue plays a dual role of interacting with the substrate and stabilizing the dimer. The dimerization loop region harbouring the second substrate specifying residue, an aspartate, shows significant differences in conformation and position between the monomeric and dimeric structures. Thus, this study has not only revealed that significant structural transitions are required for the interconversion of the inactive and the active forms of the enzyme, but also provided precise nature of these transitions. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
The structural effects of a representative ``disallowed'' conformation of Aib on the 3(10)-helical fold of an octapeptidomimetic are explored. The 1D (H-1, C-13) & 2D NMR, FT-IR and CD data reveal that the octapeptide 1, adopts a 3(10)- helical conformation in solution, as it does in its crystal structure. The C-terminal methyl carboxylate (CO2Me) of 1 was modified into an 1,3-oxazine (Oxa) functional group in the peptidomimetic 2. This modification results in the stabilization of the backbone of the C-terminal Aib (Aib(star)-Oxa) of 2, in a conformation (phi, psi = 180, 0) that is natively disallowed to Aib. Consequent to the presence of this natively disallowed conformation, the 3(10)- helical fold is not disrupted in the body of the peptidomimetic 2. But the structural distortions that do occur in 2 are primarily in residues in the immediate vicinity of the natively disallowed conformation, rather than in the whole peptide body. Non-native electronic effects resulting from modifications in backbone functional groups can be at the origin of stabilizing residues in natively disallowed conformations. (C) 2014 Wiley Periodicals, Inc. Biopolymers
Resumo:
The structural effects of a representative ``disallowed'' conformation of Aib on the 3(10)-helical fold of an octapeptidomimetic are explored. The 1D (H-1, C-13) & 2D NMR, FT-IR and CD data reveal that the octapeptide 1, adopts a 3(10)- helical conformation in solution, as it does in its crystal structure. The C-terminal methyl carboxylate (CO2Me) of 1 was modified into an 1,3-oxazine (Oxa) functional group in the peptidomimetic 2. This modification results in the stabilization of the backbone of the C-terminal Aib (Aib(star)-Oxa) of 2, in a conformation (phi, psi = 180, 0) that is natively disallowed to Aib. Consequent to the presence of this natively disallowed conformation, the 3(10)- helical fold is not disrupted in the body of the peptidomimetic 2. But the structural distortions that do occur in 2 are primarily in residues in the immediate vicinity of the natively disallowed conformation, rather than in the whole peptide body. Non-native electronic effects resulting from modifications in backbone functional groups can be at the origin of stabilizing residues in natively disallowed conformations. (C) 2014 Wiley Periodicals, Inc. Biopolymers
Resumo:
Identifying the structures of membrane bound proteins is critical to understanding their function in healthy and diseased states. We introduce a surface enhanced Raman spectroscopy technique which can determine the conformation of membrane-bound proteins, at low micromolar concentrations, and also in the presence of a substantial membrane-free fraction. Unlike conventional surface enhanced Raman spectroscopy, our approach does not require immobilization of molecules, as it uses spontaneous binding of proteins to lipid bilayer-encapsulated Ag nanoparticles. We apply this technique to probe membrane-attached oligomers of Amyloid-beta(40) (A beta(40)), whose conformation is keenly sought in the context of Alzheimer's disease. Isotope-shifts in the Raman spectra help us obtain secondary structure information at the level of individual residues. Our results show the presence of a beta-turn, flanked by two beta-sheet regions. We use solid-state NMR data to confirm the presence of the beta-sheets in these regions. In the membrane-attached oligomer, we find a strongly contrasting and near-orthogonal orientation of the backbone H-bonds compared to what is found in the mature, less-toxic A beta fibrils. Significantly, this allows a ``porin'' like beta-barrel structure, providing a structural basis for proposed mechanisms of A beta oligomer toxicity.
Resumo:
Coordination-driven self-assembly of 3-(5-(pyridin-3-yl)-1H-1,2,4-triazol-3-yl)pyridine (L) was investigated with 90 degrees cis-blocked Pd(II) acceptors and tetratopic Pd(NO3)(2). Although the ligand is capable of binding in several different conformations (acting as a ditopic donor through the pyridyl nitrogens), the experimental results (including X-ray structures) showed that it adopts a particular conformation when it binds with 90 degrees cis-blocked Pd(II) acceptors (two available sites) to yield 2 + 2] self-assembled macrocycles. On the other hand, with Pd(NO3)(2) (where four available sites are present) a different conformer of the same donor was selectively bound to form a molecular cubic cage. The experimental findings were corroborated well with the density functional theory (B3LYP) calculations. The tetratopic Pd(NO3)(2) yielded a 6 + 12] self-assembled Pd6L12 molecular cube, which contains a potential void occupied by nitrate and perchlorate ions. Being a triazole based ligand, the free space inside the cage is enriched with several sp(2) hybridised nitrogen atoms with lone pairs of electrons to act as Lewis basic sites. Knoevenagel condensation reactions of several aromatic aldehydes with active methylene compounds were successfully performed in reasonably high yields in the presence of the cage.
Resumo:
G. N. Ramachandran is among the founding fathers of structural molecular biology. He made pioneering contributions in computational biology, modelling and what we now call bioinformatics. The triple helical coiled coil structure of collagen proposed by him forms the basis of much of collagen research at the molecular level. The Ramachandran map remains the simplest descriptor and tool for validation of protein structures. He has left his imprint on almost all aspects of biomolecular conformation. His contributions in the area of theoretical crystallography have been outstanding. His legacy has provided inspiration for the further development of structural biology in India. After a pause, computational biology and bioinformatics are in a resurgent phase. One of the two schools established by Ramachandran pioneered the development of macromolecular crystallography, which has now grown into an important component of modern biological research in India. Macromolecular NMR studies in the country are presently gathering momentum. Structural biology in India is now poised to again approach heights of the kind that Ramachandran conquered more than a generation ago.