492 resultados para Magnetic ranges
Resumo:
Cycloheximide-ribosome interactions from sensitive and resistant organisms were studied by proton magnetic resonance spectroscopic techniques. The two methyl resonances of cycloheximide upon interaction with ribosomes from Saccharomyces cerevisiae showed preferential broadening. Comparison of cycloheximide line broadening as effected by ribosomes from S. cerevisiae (sensitive) and Microsporum canis (resistant) revealed that less cycloheximide is bound to the M. canis ribosomes. From the decrease in line broadening observed with increasing temperature it may be concluded that cycloheximide-ribosome interaction is a fast exchange reaction. Tetracycline did not compete with cycloheximide for binding site(s) on the ribosomes of S. cerevisiae.
Magnetic properties of pure, Sr- and Ca-Doped La2NiO4+δ ceramics: Onset of high-Tc superconductivity
Resumo:
We present the results for the temperature and field dependence of the magnetic for ceramic materials of the composition La2−xMxNiO4, with M=Sr or Ca and 0≤x≤0.4. The onset of a strong diamagnetism has been observed at temperatures between 8 and 70 K, depending on sample composition, annealing conditions. and thermal cycling procedures. The results are similar to those obtained earlier for monocrystalline samples and are likewise interpreted as due to the onset of superconductivity in a minority phase. A comparison with the results for superconducting La1.8Sr0.2Cu0.9Ni0.1O4 ceramics is also made; this illustrates some unique features of the nickelate systems, such as the high values of the critical fields Hc1 and Hc2. The differences between monocrystalline and ceramic systems are also discussed.
Resumo:
We present results from numerical simulations using a ‘‘cell-dynamical system’’ to obtain solutions to the time-dependent Ginzburg-Landau equation for a scalar, two-dimensional (2D), (Φ2)2 model in the presence of a sinusoidal external magnetic field. Our results confirm a recent scaling law proposed by Rao, Krishnamurthy, and Pandit [Phys. Rev. B 42, 856 (1990)], and are also in excellent agreement with recent Monte Carlo simulations of hysteretic behavior of 2D Ising spins by Lo and Pelcovits [Phys. Rev. A 42, 7471 (1990)].
Resumo:
The conformation and stability of pearl millet prolamin (pennisetin) were examined by using circular dichroism and C-13 nuclear magnetic resonance spectroscopy. The far UV spectrum of pennisetin in 70% (v/v) aqueous ethanol showed the presence of predominant alpha-helical structure and its occurrence in the alpha + beta class of protein. The far and near UV spectra of pennisetin in ethanol: trifluoroethanol also supported this observation. However pennisetin showed the presence of some helical structure in 8 M urea which is known to be a highly unordered structure forming solvent. A decrease in alpha helical content of native pennisetin was observed with rise in temperature from 5-75-degrees-C and this effect of temperature was found to be reversible. A C-13 NMR spectrum of pennisetin in 70% ethanol suggested a high degree of molecular mobility in ethanol. Comparison of the cross polarization spectrum with the single pulse excitation spectrum suggested pennisetin to be a heterogeneous protein.
Resumo:
Working under the hypothesis that magnetic flux in the sun is generated at the bottom of the convection zone, Choudhuri and Gilman (1987; Astrophys. J. 316, 788) found that a magnetic flux tube symmetric around the rotation axis, when released at the bottom of the convection zone, gets deflected by the Coriolis force and tends to move parallel to the rotation axis as it rises in the convection zone. As a result, all the flux emerges at rather high latitudes and the flux observed at the typical sunspot latitudes remains unexplained. Choudhuri (1989; Solar Physics, in press) finds that non-axisymmetric perturbations too cannot subdue the Coriolis force. In this paper, we no longer treat the convection zone to be passive as in the previous papers, but we consider the role of turbulence in the convection zone in inhibiting the Coriolis force. The interaction of the flux tubes with the turbulence is treated in a phenomenological way as follows: (1) Large scale turbulence on the scale of giant cells can physically drag the tubes outwards, thus pulling the flux towards lower latitudes by dominating over the Coriolis force. (2) Small scale turbulence of the size of the tubes can exchange angular momentum with the tube, thus suppressing the growth of the Coriolis force and making the tubes emerge at lower latitudes. Numerical simulations show that the giant cells can drag the tubes and make them emerge at lower latitufes only if the velocities within the giant cells are unrealistically large of if the radii of the flux tubes are as small as 10 km. However, small scale turbulence can successfully suppress the growth of the Coriolis force if the tubes have radii smaller than about 300 km which may not be unreasonable. Such flux tubes can then emerge at low latitudes where sunspots are seen.
Resumo:
The effect of turbulence on the nonaxisymmetric flux rings of equipartition field strength in bipolar magnetic regions is studied on the basis of the small-scale momentum exchange mechanism and the giant cell drag combined with the Kelvin-Helmholtz drag mechanism. It is shown that the giant cell drag and small-scale momentum exchange mechanism can make equipartition flux loops emerge at low latitudes, in addition to making them exhibit the observed tilts. However, the sizes of the flux tubes have to be restricted to a couple of hundred kilometers. An ad hoc constraint on the footpoints of the flux loops is introduced by not letting them move in the phi direction, and it is found that equipartition fields of any size can be made to emerge at sunspot latitudes with the observed tilts by suitably adjusting the footpoint separations.
Resumo:
The reaction of [Cu2(O2CMe)4(H2O)2] with N, N, N′, N′-tetramethylethane- 1,2-diamine (tmen) in ethanol yielded the dicopper(II) complex [Cu2(OH)(O2CMe)(tmen)2][ClO4]21. A similar reaction with N, N- dimethylethane- 1,2-diamine (dmen) afforded a crystalline product 2 in which two dicopper(II) complexes, [Cu2(OH)(O2CMe)(dmen)2][ClO4]22a and [Cu2(OH)(O2CMe)(H2O)2(dmen)2][ClO4]22b, are cocrystallized in a 1 : 1 molar ratio along with 2NaClO4. The crystal structures of 1 and 2 have been determined. The complexes have an asymmetrically dibridged [Cu2(µ-OH)(µ-O2CMe)]2+ core. The co-ordination geometry of the metal is square planar (CuO2N2). The copper atoms in 2b have a square-pyramidal CuO3N2 co-ordination sphere. The Cu Cu distances and Cu–O–Cu angles in 1, 2a and 2b are 3.339(2), 3.368(3), 3.395(7)Å, 120.1(2), 116.4(1) and 123.6(2)°, respectively. Complex 1 exhibits an axial ESR spectrum in a methanol glass giving g∥= 2.26 (A∥= 164 × 10–4 cm–1) and g⊥= 2.04. The ESR spectra obtained from the bulk material of the dmen product are indicative of the presence of two dimers, viz. complex 2a(g∥= 2.25, A∥= 165 × 10–4 cm–1; g⊥= 2.03) and 2b(g∥= 2.19, A∥= 184 × 10–4 cm–1; g⊥= 2.0). Variable-temperature magnetic susceptibility measurements on these complexes show an intramolecular antiferromagnetic coupling in the dimeric core. The fitting parameters are J=–27.8 cm–1, g= 2.1 for complex 1 and J=–10.1 cm–1, g= 2.0 for 2. The magnetostructural properties of the complexes are discussed. There is a linear correlation of the –2J values with the Cu Cu distances among dibridged complexes having square-planar copper(II) centres.
Resumo:
The nonaxisymmetric unsteady motion produced by a buoyancy-induced cross-flow of an electrically conducting fluid over an infinite rotating disk in a vertical plane and in the presence of an applied magnetic field normal to the disk has been studied. Both constant wall and constant heat flux conditions have been considered. It has been found that if the angular velocity of the disk and the applied magnetic field squared vary inversely as a linear function of time (i.e. as (1??t*)?1, the governing Navier-Stokes equation and the energy equation admit a locally self-similar solution. The resulting set of ordinary differential equations has been solved using a shooting method with a generalized Newton's correction procedure for guessed boundary conditions. It is observed that in a certain region near the disk the buoyancy induced cross-flow dominates the primary von Karman flow. The shear stresses induced by the cross-flow are found to be more than these of the primary flow and they increase with magnetic parameter or the parameter ? characterizing the unsteadiness. The velocity profiles in the x- and y-directions for the primary flow at any two values of the unsteady parameter ? cross each other towards the edge of the boundary layer. The heat transfer increases with the Prandtl number but reduces with the magnetic parameter.
Resumo:
We study large-scale kinematic dynamo action due to turbulence in the presence of a linear shear flow in the low-conductivity limit. Our treatment is non-perturbative in the shear strength and makes systematic use of both the shearing coordinate transformation and the Galilean invariance of the linear shear flow. The velocity fluctuations are assumed to have low magnetic Reynolds number (Re-m), but could have arbitrary fluid Reynolds number. The equation for the magnetic fluctuations is expanded perturbatively in the small quantity, Re-m. Our principal results are as follows: (i) the magnetic fluctuations are determined to the lowest order in Rem by explicit calculation of the resistive Green's function for the linear shear flow; (ii) the mean electromotive force is then calculated and an integro-differential equation is derived for the time evolution of the mean magnetic field. In this equation, velocity fluctuations contribute to two different kinds of terms, the 'C' and 'D' terms, respectively, in which first and second spatial derivatives of the mean magnetic field, respectively, appear inside the space-time integrals; (iii) the contribution of the D term is such that its contribution to the time evolution of the cross-shear components of the mean field does not depend on any other components except itself. Therefore, to the lowest order in Re-m, but to all orders in the shear strength, the D term cannot give rise to a shear-current-assisted dynamo effect; (iv) casting the integro-differential equation in Fourier space, we show that the normal modes of the theory are a set of shearing waves, labelled by their sheared wavevectors; (v) the integral kernels are expressed in terms of the velocity-spectrum tensor, which is the fundamental dynamical quantity that needs to be specified to complete the integro-differential equation description of the time evolution of the mean magnetic field; (vi) the C term couples different components of the mean magnetic field, so they can, in principle, give rise to a shear-current-type effect. We discuss the application to a slowly varying magnetic field, where it can be shown that forced non-helical velocity dynamics at low fluid Reynolds number does not result in a shear-current-assisted dynamo effect.
Resumo:
A hydrothermal reaction of Mn(OAc)(2)center dot 4H(2)O, Co(OAc)(2)center dot 4H(2)O and 1,2,4 benzenetricarboxylic acid at 220 degrees C for 24 h gives rise to a mixed metal MOF compound, CoMn2(C6H3(COO)(3))(2)], I. The structure is formed by the connectivity between octahedral CoO6 and trigonal prism MnO6 units connected through their vertices forming a Kagome layer, which are pillared by the trimellitate. Magnetic susceptibility studies on the MOF compound indicate a canted anti-ferromagnetic behavior, due to the large antisymmetric DM interaction between the M2+ ions (M = Mn, Co). Thermal decomposition studies indicate that the MOF compound forms a tetragonal mixed-metal spinel phase, CoMn2O4, with particle sizes in the nano regime at 400 degrees C. The particle size of the CoMn2O4 can be controlled by varying the decomposition temperature of the parent MOF compound. Magnetic studies of the CoMn2O4 compound suggests that the coercivity and the ferrimagnetic ordering temperatures are dependent on the particle size.
Resumo:
The origin of hydrodynamic turbulence in rotating shear flow is a long standing puzzle. Resolving it is especially important in astrophysics when the flow's angular momentum profile is Keplerian which forms an accretion disk having negligible molecular viscosity. Hence, any viscosity in such systems must be due to turbulence, arguably governed by magnetorotational instability, especially when temperature T greater than or similar to 10(5). However, such disks around quiescent cataclysmic variables, protoplanetary and star-forming disks, and the outer regions of disks in active galactic nuclei are practically neutral in charge because of their low temperature, and thus are not expected to be coupled with magnetic fields enough to generate any transport due to the magnetorotational instability. This flow is similar to plane Couette flow including the Coriolis force, at least locally. What drives their turbulence and then transport, when such flows do not exhibit any unstable mode under linear hydrodynamic perturbation? We demonstrate that the three-dimensional secondary disturbance to the primarily perturbed flow that triggers elliptical instability may generate significant turbulent viscosity in the range 0.0001 less than or similar to nu(t) less than or similar to 0.1, which can explain transport in accretion flows.
Resumo:
The properties of the ground state of N anyons in an external magnetic field and a harmonic oscillator potential are computed in the large-N limit using the Thomas-Fermi approximation. The number of level crossings in the ground state as a function of the harmonic frequency, the strength and the direction of the magnetic field and N are also studied.
Resumo:
The unsteady free convection boundary layer at the stagnation point of a two-dimensional body and an axisymmetric body with prescribed surface heat flux or temperature has been studied. The magnetic field is applied parallel to the surface and the effect of induced magnetic field has been considered. It is found that for certain powerlaw distribution of surface heat flux or temperature and magnetic field with time, the governing boundary layer equations admit a self-similar solution locally. The resulting nonlinear ordinary differential equations have been solved using a finite element method and a shooting method with Newton's corrections for missing initial conditions. The results show that the skin friction and heat transfer coefficients, and x-component of the induced magnetic field on the surface increase with the applied magnetic field. In general, the skin friction, heat transfer and x-component of the induced magnetic field for axisymmetric case are more than those of the two-dimensional case. Also they change more when the surface heat flux or temperature decreases with time than when it increases with time. The skin friction, heat transfer and x-component of the induced magnetic field are significantly affected by the magnetic Prandtl number and they increase as the magnetic Prandtl number decreases. The skin friction and x-component of the magnetic field increase with the dissipation parameter, but heat transfer decreases.
Resumo:
Two distinct ferromagnetic phases are present in LaMn0.5Co0.5O3 for which the spin-only magnetic moment calculated from the high temperature dc susceptibility is found to be unusually high. Such a high moment can only be accounted for by assigning the valence state of the cations to Mn2+-Co4+. This is unrealistic as the earlier report based on X-ray absorption spectroscopy (XAS) has suggested the valence state to be mainly Mn4+-Co2+ with traces of Co3+. Also from our studies using XAS, it is found that the valence state is mainly Mn4+-Co2+. In addition, no notable difference is observed in the minor Co3+ present in both phases. Our results based on X-ray magnetic circular dichroism studies (XMCD) reveal the presence of ``distinct'' high orbital moment associated with Co2+ for both phases. Thus it is found that the distinctness of the orbital moment also plays a vital role in determining the magnetic moment and T-c of both phases of LaMn0.5Co0.5O3. By considering the orbital moment obtained from XMCD, the anomaly in the paramagnetic susceptibility is resolved and thus we are able to assign the valence state to Mn4+-Co2+ configuration. The difference in the magnitude of orbital moment in both phases is believed to be due to the crystal field effects.
Resumo:
We investigate the structural, magnetic, and specific heat behavior of the hexagonal manganite Dy0.5Y0.5MnO3 in order to understand the effect of dilution of Dy magnetism with nonmagnetic yttrium. In this compound, the triangular Mn lattice orders antiferromagnetic at T-N(Mn) approximate to 68 K observed experimentally in the derivative of magnetic susceptibility as well as in specific heat. In addition, a low-temperature peak at T-N(Dy) similar to 3 K is observed in specific heat which is attributed to rare earth order. The T-N(Mn) increases by 9 K compared to that of hexagonal (h) DyMnO3 while T-N(Dy) is unchanged. A change in slope of thermal evolution of lattice parameters is observed to occur at temperature close to T-N(Mn). This hints at strong magnetoelastic coupling in this geometric multiferroic. In magnetization measurements, steplike features are observed when the magnetic field is applied along the c axis which shift to higher fields with temperature and vanish completely above 40 K. The presence of different magnetic phases at low temperature and strong magnetoelastic effects can lead to such field-induced transitions which resemble metamagnetic transitions. This indicates the possibility of strong field-induced effects in dielectric properties of this material, which is unexplored to date.