218 resultados para 291605 Processor Architectures


Relevância:

10.00% 10.00%

Publicador:

Resumo:

FreeRTOS is an open-source real-time microkernel that has a wide community of users. We present the formal specification of the behaviour of the task part of FreeRTOS that deals with the creation, management, and scheduling of tasks using priority-based preemption. Our model is written in the Z notation, and we verify its consistency using the Z/Eves theorem prover. This includes a precise statement of the preconditions for all API commands. This task model forms the basis for three dimensions of further work: (a) the modelling of the rest of the behaviour of queues, time, mutex, and interrupts in FreeRTOS; (b) refinement of the models to code to produce a verified implementation; and (c) extension of the behaviour of FreeRTOS to multi-core architectures. We propose all three dimensions as benchmark challenge problems for Hoare's Verified Software Initiative.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe our novel LED communication infrastructure and demonstrate its scalability across platforms. Our system achieves 50 kilo bits per second on very simple SoCs and scales to megabits bits per second rates on dual processor based mobile phone platforms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ser/Thr and Tyr protein kinases orchestrate many signalling pathways and hence loss in this balance leads to many disease phenotypes. Due to their high abundance, diversity and importance, efforts have been made in the past to classify kinases and annotate their functions at both gross and fine levels. These kinases are conventionally classified into subfamilies based on the sequences of catalytic domains. Usually the domain architecture of a full-length kinase is consistent with the subfamily classification made based on the sequence of kinase domain. Important contributions of modular domains to the overall function of the kinase are well known. Recently occurrence of two kinds of outlier kinases-''Hybrid'' and ``Rogue'' has been reported. These show considerable deviations in their domain architectures from the typical domain architecture known for the classical kinase subfamilies. This article provides an overview of the different subfamilies of human kinases and the role of non-kinase domains in functions and diseases. Importantly this article provides analysis of hybrid and rogue kinases encoded in the human genome and highlights their conservation in closely related primate species. These kinases are examples of elegant rewiring to bring about subtle functional differences compared to canonical variants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The correctness of a hard real-time system depends its ability to meet all its deadlines. Existing real-time systems use either a pure real-time scheduler or a real-time scheduler embedded as a real-time scheduling class in the scheduler of an operating system (OS). Existing implementations of schedulers in multicore systems that support real-time and non-real-time tasks, permit the execution of non-real-time tasks in all the cores with priorities lower than those of real-time tasks, but interrupts and softirqs associated with these non-real-time tasks can execute in any core with priorities higher than those of real-time tasks. As a result, the execution overhead of real-time tasks is quite large in these systems, which, in turn, affects their runtime. In order that the hard real-time tasks can be executed in such systems with minimal interference from other Linux tasks, we propose, in this paper, an integrated scheduler architecture, called SchedISA, which aims to considerably reduce the execution overhead of real-time tasks in these systems. In order to test the efficacy of the proposed scheduler, we implemented partitioned earliest deadline first (P-EDF) scheduling algorithm in SchedISA on Linux kernel, version 3.8, and conducted experiments on Intel core i7 processor with eight logical cores. We compared the execution overhead of real-time tasks in the above implementation of SchedISA with that in SCHED_DEADLINE's P-EDF implementation, which concurrently executes real-time and non-real-time tasks in Linux OS in all the cores. The experimental results show that the execution overhead of real-time tasks in the above implementation of SchedISA is considerably less than that in SCHED_DEADLINE. We believe that, with further refinement of SchedISA, the execution overhead of real-time tasks in SchedISA can be reduced to a predictable maximum, making it suitable for scheduling hard real-time tasks without affecting the CPU share of Linux tasks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Efficient sensing of trace amount nitroaromatic (NAC) explosives has become a major research focus in recent time due to concerns over national security as well as their role as environment pollutants. NO2-containing electron-deficient aromatic compounds, such as picric acid (PA), trinitrotoluene (TNT), and dinitrotoluene (DNT), are the common constituents of many commercially available chemical explosives. In this article, we have summarized our recent developments on the rational design of electron-rich self-assembled discrete molecular sensors and their efficacy in sensing nitroaromatics both in solution as well as in vapor phase. Several p-electron-rich fluorescent metallacycles (squares, rectangles, and tweezers/pincers) and metallacages (trigonal and tetragonal prisms) have been synthesized by means of metal-ligand coordination-bonding interactions, with enough internal space to accommodate electron-deficient nitroaromatics at the molecular level by multiple supramolecular interactions. Such interactions subsequently result in the detectable fluorescence quenching of sensors even in the presence of trace quantities of nitroaromatics. The fascinating sensing characteristics of molecular architectures discussed in this article may enable future development of improved sensors for nitroaromatic explosives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Lattice-Boltzmann method (LBM), a promising new particle-based simulation technique for complex and multiscale fluid flows, has seen tremendous adoption in recent years in computational fluid dynamics. Even with a state-of-the-art LBM solver such as Palabos, a user has to still manually write the program using library-supplied primitives. We propose an automated code generator for a class of LBM computations with the objective to achieve high performance on modern architectures. Few studies have looked at time tiling for LBM codes. We exploit a key similarity between stencils and LBM to enable polyhedral optimizations and in turn time tiling for LBM. We also characterize the performance of LBM with the Roofline performance model. Experimental results for standard LBM simulations like Lid Driven Cavity, Flow Past Cylinder, and Poiseuille Flow show that our scheme consistently outperforms Palabos-on average by up to 3x while running on 16 cores of an Intel Xeon (Sandybridge). We also obtain an improvement of 2.47x on the SPEC LBM benchmark.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The remarkable capability of nature to design and create excellent self-assembled nano-structures, especially in the biological world, has motivated chemists to mimic such systems with synthetic molecular and supramolecular systems. The hierarchically organized self-assembly of low molecular weight gelators (LMWGs) based on non-covalent interactions has been proven to be a useful tool in the development of well-defined nanostructures. Among these, the self-assembly of sugar-derived LMWGs has received immense attention because of their propensity to furnish biocompatible, hierarchical, supramolecular architectures that are macroscopically expressed in gel formation. This review sheds light on various aspects of sugar-derived LMWGs, uncovering their mechanisms of gelation, structural analysis, and tailorable properties, and their diverse applications such as stimuli-responsiveness, sensing, self-healing, environmental problems, and nano and biomaterials synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work, electrospraying of an organic molecule is carried out using various solvents, obtaining fibril structures along with a range of distinct morphologies. Solvent characteristics play a major role in determining the morphology of the organic material. A thiophene derivative (7,9-di(thiophen-2-yl)-8H-cyclopentaa]acenaphthylen-8-one) (DTCPA) of donor-acceptor-donor (DAD) architecture is used to study this solvent effect. Seven solvents with decreasing vapour pressure are selected for experiments. Electrospraying is conducted at a solution concentration of 1.5 wt% and a constant applied voltage of 15 kV. Gradual transformation in morphology of the electrospun product from spiked-spheres to only spikes is observed. A mechanism describing this transformation is proposed based on electron micrograph analysis and XRD analysis. These data indicate that the morphological change is due to the synergistic effect of both vapour pressure and dielectric constant of the solvents. Through a reasonable control of the crystallite size and morphology along with the proposal of the transformation mechanism, this study elucidates electrospraying as a prospective method for designing architectures in organic electronics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growing number of applications and processing units in modern Multiprocessor Systems-on-Chips (MPSoCs) come along with reduced time to market. Different IP cores can come from different vendors, and their trust levels are also different, but typically they use Network-on-Chip (NoC) as their communication infrastructure. An MPSoC can have multiple Trusted Execution Environments (TEEs). Apart from performance, power, and area research in the field of MPSoC, robust and secure system design is also gaining importance in the research community. To build a secure system, the designer must know beforehand all kinds of attack possibilities for the respective system (MPSoC). In this paper we survey the possible attack scenarios on present-day MPSoCs and investigate a new attack scenario, i.e., router attack targeted toward NoC architecture. We show the validity of this attack by analyzing different present-day NoC architectures and show that they are all vulnerable to this type of attack. By launching a router attack, an attacker can control the whole chip very easily, which makes it a very serious issue. Both routing tables and routing logic-based routers are vulnerable to such attacks. In this paper, we address attacks on routing tables. We propose different monitoring-based countermeasures against routing table-based router attack in an MPSoC having multiple TEEs. Synthesis results show that proposed countermeasures, viz. Runtime-monitor, Restart-monitor, Intermediate manager, and Auditor, occupy areas that are 26.6, 22, 0.2, and 12.2 % of a routing table-based router area. Apart from these, we propose Ejection address checker and Local monitoring module inside a router that cause 3.4 and 10.6 % increase of a router area, respectively. Simulation results are also given, which shows effectiveness of proposed monitoring-based countermeasures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coarse Grained Reconfigurable Architectures (CGRA) are emerging as embedded application processing units in computing platforms for Exascale computing. Such CGRAs are distributed memory multi- core compute elements on a chip that communicate over a Network-on-chip (NoC). Numerical Linear Algebra (NLA) kernels are key to several high performance computing applications. In this paper we propose a systematic methodology to obtain the specification of Compute Elements (CE) for such CGRAs. We analyze block Matrix Multiplication and block LU Decomposition algorithms in the context of a CGRA, and obtain theoretical bounds on communication requirements, and memory sizes for a CE. Support for high performance custom computations common to NLA kernels are met through custom function units (CFUs) in the CEs. We present results to justify the merits of such CFUs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we present HyperCell as a reconfigurable datapath for Instruction Extensions (IEs). HyperCell comprises an array of compute units laid over a switch network. We present an IE synthesis methodology that enables post-silicon realization of IE datapaths on HyperCell. The synthesis methodology optimally exploits hardware resources in HyperCell to enable software pipelined execution of IEs. Exploitation of temporal reuse of data in HyperCell results in significant reduction of input/output bandwidth requirements of HyperCell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new carbazole-based tetraimidazole ligand 1,3,6,8-tetra(1H-imidazol-1-yl)-9-methyl-9H-carbazole (L) has been synthesized. The unsymmetrical nature of L as well as the rotational freedom of imidazole donor moieties around C-N bond make it a special building unit, which upon treatment with cis-(tmeda)Pd(NO3)(2) produced an unprecedented single linkage-isomeric Pd-8 tetrafacial molecular nanobarrel (PSMBR-1) tmeda N,N,N',N'-tetramethylethane-1,2-diamine]. Unlike closed architectures, open barrel architecture of water-soluble PSMBR-1 makes it an ideal host for some water insoluble polyaromatic hydrocarbons in aqueous medium; one such inclusion complex coroneneCPSMBR-1 was characterized by X-ray diffraction study. Moreover, the potential application of PSMER-1 as carrier in aqueous medium for the transportation of water insoluble fluorophore (perylene) for live cell imaging is explored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many studies of reaching and pointing have shown significant spatial and temporal correlations between eye and hand movements. Nevertheless, it remains unclear whether these correlations are incidental, arising from common inputs (independent model); whether these correlations represent an interaction between otherwise independent eye and hand systems (interactive model); or whether these correlations arise from a single dedicated eye-hand system (common command model). Subjects were instructed to redirect gaze and pointing movements in a double-step task in an attempt to decouple eye-hand movements and causally distinguish between the three architectures. We used a drift-diffusion framework in the context of a race model, which has been previously used to explain redirect behavior for eye and hand movements separately, to predict the pattern of eye-hand decoupling. We found that the common command architecture could best explain the observed frequency of different eye and hand response patterns to the target step. A common stochastic accumulator for eye-hand coordination also predicts comparable variances, despite significant difference in the means of the eye and hand reaction time (RT) distributions, which we tested. Consistent with this prediction, we observed that the variances of the eye and hand RTs were similar, despite much larger hand RTs (similar to 90 ms). Moreover, changes in mean eye RTs, which also increased eye RT variance, produced a similar increase in mean and variance of the associated hand RT. Taken together, these data suggest that a dedicated circuit underlies coordinated eye-hand planning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite significant improvements in their properties as emitters, colloidal quantum dots have not had much success in emerging as suitable materials for laser applications. Gain in most colloidal systems is short lived, and needs to compete with biexcitonic decay. This has necessitated the use of short pulsed lasers to pump quantum dots to thresholds needed for amplified spontaneous emission or lasing. Continuous wave pumping of gain that is possible in some inorganic phosphors has therefore remained a very distant possibility for quantum dots. Here, we demonstrate that trilayer heterostructures could provide optimal conditions for demonstration of continuous wave lasing in colloidal materials. The design considerations for these materials are discussed in terms of a kinetic model. The electronic structure of the proposed dot architectures is modeled within effective mass theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantum ensembles form easily accessible architectures for studying various phenomena in quantum physics, quantum information science and spectroscopy. Here we review some recent protocols for measurements in quantum ensembles by utilizing ancillary systems. We also illustrate these protocols experimentally via nuclear magnetic resonance techniques. In particular, we shall review noninvasive measurements, extracting expectation values of various operators, characterizations of quantum states and quantum processes, and finally quantum noise engineering.