400 resultados para radiative transition
Resumo:
Inovirus is a helical array of agr-helical protein asymmetric units surrounding a DNA core. X-ray fibre diffraction studies show that the Pf1 species of Inovirus can undergo a reversible temperature-induced transition between two similar structural forms having slightly different virion helix parameters. Molecular models of the two forms show no evidence for altered interactions between the protein and either the solvent or the viral DNA; but there are significant differences in the shape and orientation of the protein asymmetric unit, related to the changes in the virion parameters. Normal modes involving libration of whole asymmetric units are in a frequency range with appreciable entropy of libration, and the structural transition may be related to changes in libration.
Resumo:
We conduct a numerical study of the dynamic behavior of a dense hard-sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free-energy functional of the Ramakrishnan-Yussouff form. We find that the system exhibits glassy behavior as evidenced through a stretched exponential decay and a two-stage relaxation of the density correlation function. The characteristic times grow with increasing density according to the Vogel-Fulcher law. The wave-number dependence of the kinetics is extensively explored. The connection of our results with experiment, mode-coupling theory, and molecular-dynamics results is discussed.
Resumo:
Flow visualization studies of plane laminar bubble plumes have been conducted to yield quantitative data on transition height, wavelength and wave velocity of the most unstable disturbance leading to transition. These are believed to be the first results of this kind. Most earlier studies are restricted to turbulent bubble plumes. In the present study, the bubble plumes were generated by electrolysis of water and hence very fine control over bubble size distribution and gas flow rate was possible to enable studies with laminar bubble plumes. Present observations show that (a) the dominant mode of instability in plane bubble plumes is the sinuous mode, (b) transition height and wavelength are related linearly with the proportionality constant being about 4, (c) wave velocity is about 40 % of the mean plume velocity, and (d) normalized transition height data correlate very well with a source Grashof number. Some agreement and some differences in transition characteristics of bubble plumes have been observed compared to those for similar single-phase flows.
Resumo:
In this paper we report the measurements of specific heats of five glass formers as they are cooled through the glass-transition region. The measurements are compared with other specific-heat measurements such as adiabatic-calorimetry and ac-calorimetry measurements. The data are then analyzed using a model of enthalpy relaxation and nonequilibrium cooling, which can track the nonequilibrium relaxation time tau(S). The relevant parameters that describe tau(S) are obtained, allowing us to compare the enthalpy-relaxation times obtained from this method with other methods. We display the clear connection of the unrelaxed enthalpy with the nonequilibrium relaxation time and also show the role played by the delayed heat release from the unrelaxed enthalpy in the glass-transition region. We have also made certain definite observations regarding the equilibrium configurational specific heat and the Vogel-Fulcher law, which describes tau(S).
Resumo:
Classical description of thermodynamic properties during glass transition has been questioned by the entropy-loss model. The uncompensated loss of entropy at the glass transition temperature and zero residual entropy is at the heart of the controversy. Both the models are critically reviewed. A unified model is presented which incorporates features of both entropy loss and residual entropy. It implies two different types of contributions to the entropy of the supercooled liquid, one of which vanishes at the transition and the other which contributes to residual entropy. Entropy gain during spontaneous relaxation of glass, and the nature of heat capacity `hysteresis' during cooling and heating through the glass transition range support the proposed model. Experiments are outlined for differentiating between the models.
Resumo:
We present an explicit solution of the problem of two coupled spin-1/2 impurities, interacting with a band of conduction electrons. We obtain an exact effective bosonized Hamiltonian, which is then treated by two different methods (low-energy theory and mean-field approach). Scale invariance is explicitly shown at the quantum critical point. The staggered susceptibility behaves like ln(T(K)/T) at low T, whereas the magnetic susceptibility and [S1.S2] are well behaved at the transition. The divergence of C(T)/T when approaching the transition point is also studied. The non-Fermi-liquid (actually marginal-Fermi-liquid) critical point is shown to arise because of the existence of anomalous correlations, which lead to degeneracies between bosonic and fermionic states of the system. The methods developed in this paper are of interest for studying more physically relevant models, for instance, for high-T(c) cuprates.
Resumo:
MnO/C composite coatings were grown by the metalorganic chemical vapor deposition process on ceramic alumina in argon ambient. Characterization by various techniques confirms that these coatings are homogeneous composites comprising nanometer-sized MnO particles embedded in a matrix of nanometer-sized graphite. Components of the MnO/C composite coating crystalline disordered, but are electrically quite conductive. Resistance vs. temperature measurements show that coating resistance increases exponentially from a few hundred ohms at room temperature to a few megaohms at 30 K. Logarithmic plots of reduced activation energy vs. temperature show that the coating material undergoes a metal-insulator transition. The reduced activation energy exponent for the film under zero magnetic field was 2.1, which is unusually high, implying that conduction is suppressed at much faster rate than the Mott or the Efros-Shklovskii hopping mechanism. Magnetoconductance us. magnetic field plots obtained at various temperatures show a high magnetoconductance (similar to 28.8%) at 100 K, which is unusually large for a disordered system, wherein magnetoresistance is attributed typically to weak localization. A plausible explanation for the unusual behavior observed in the carbonaceous disordered composite material is proposed. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A mean-field description of the glass transition in the hard-sphere system is obtained by numerically locating "glassy" minima of a model free-energy functional. These minima, characterized by inhomogeneous but aperiodic density distributions, appear as the average density is increased above the value at which equilibrium crystallization takes place. Investigations of the density distribution and local bond-orientational order at these minima yield results similar to those obtained from simulations.
Resumo:
The proton second moment (M2) and spin-lattice relaxation time (T1) have been measured in (NH4)2ZnBr4 in the range 77-300 K. The room-temperature spectrum shows a structure which disappears around 243 K. The signal is strong and narrow even at 77 K. Proton T1 shows a maximum at 263 K, caused by spin rotation interaction and decreases with decreasing temperature till 235 K, where it shows a sudden increase. Below 235 K, again it decreases and shows a slope change around 216.5 K (reported Tc). From 216.5 K, T1 decreases continuously without exhibiting any minimum down to 77 K. The narrow line at 77 K, and absence of a T1 minimum down to 77 K indicate the possibility of quantum mechanical tunnelling in this system. Motional parameters such as activation energy and pre-exponential factor have been evaluated for the reorientational motion of the NH+4 ion.
Resumo:
Studies of the reaction of metal chlorides, MCl2 (M = Mn, Co, Ni, Cu, Zn) with PPHF at room temperature have shown that Mn, Co and Zn form the corresponding metal fluorides, MF2, while Ni and Cu form their dipyridine metal(II) dichloride complexes. Nickel and copper complexes further undergo fluorination and complexation by potassium hydrogen fluoride in PPHF to form KNiF3 and KCuF3.
Resumo:
The interaction of CO with Cu, Pd, and Ni at different coverages of the metals on solid substrates has been investigated by He II and core-level spectroscopies, after the nature of variation of the metal core-level binding energies with the coverage or the cluster size is established. The separation between the (1 pi + 5 sigma) and 4 sigma levels of CO increases with a decrease in the size of the metal clusters, accompanied by an increase in the desorption temperature. In the case of Cu, the intramolecular shakeup satellite of CO disappears on small clusters. More importantly, CO dissociates on small Ni clusters, clearly confirming that metal-CO interaction strength increases with a decrease in the cluster size.
Resumo:
We discuss briefly some of the basic issues involved in the field of metal-insulator transition. We point out why this area is a profitable area of research. We also suggest certain definite action plan for this area in particular and the area of low temperature solid state physics in general.
Resumo:
The thermopower (TEP) and electrical resistance of stoichiometric Fe3O4 crystals have been measured up to pressures of 6 GPa over the temperature range of 80-160 K. The resistance decreases markedly with increasing pressure below the Verwey transition temperature TV and TV decreases linearly with increasing pressure. The magnitude of the TEP as well as the discontinuity at TV decrease with increasing pressure. The thermopower of Fe3O4 shows an interesting upswing at low temperatures (lt;100 K) which is affected significantly by pressure.