291 resultados para quantum computation
Resumo:
An attempt is made to study the two dimensional (2D) effective electron mass (EEM) in quantum wells (Qws), inversion layers (ILs) and NIPI superlattices of Kane type semiconductors in the presence of strong external photoexcitation on the basis of a newly formulated electron dispersion laws within the framework of k.p. formalism. It has been found, taking InAs and InSb as examples, that the EEM in Qws, ILs and superlattices increases with increasing concentration, light intensity and wavelength of the incident light waves, respectively and the numerical magnitudes in each case is band structure dependent. The EEM in ILs is quantum number dependent exhibiting quantum jumps for specified values of the surface electric field and in NIPI superlattices; the same is the function of Fermi energy and the subband index characterizing such 2D structures. The appearance of the humps of the respective curves is due to the redistribution of the electrons among the quantized energy levels when the quantum numbers corresponding to the highest occupied level changes from one fixed value to the others. Although the EEM varies in various manners with all the variables as evident from all the curves, the rates of variations totally depend on the specific dispersion relation of the particular 2D structure. Under certain limiting conditions, all the results as derived in this paper get transformed into well known formulas of the EEM and the electron statistics in the absence of external photo-excitation and thus confirming the compatibility test. The results of this paper find three applications in the field of microstructures. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We report the nonlinear optical absorption studies in two differently sized water-soluble cadmium telluride quantum dot (QD) samples, exhibiting first excitonic absorption peaks at 493 nm and 551 nm, respectively. An optical limiting behavior is observed for near-resonant excitation at 532 nm using nanosecond laser pulses, originating from the effective two-photon absorption (TPA) mechanism. The effective TPA coefficient (beta(eff)) is measured to be in the range of 10(-12) m/W. This is one order of magnitude higher than the TPA coefficient (beta) reported for off-resonant excitation. At this excitation wavelength, the smaller QD shows a relatively weaker photoluminescence and stronger nonlinear absorption. (C) 2012 American Institute of Physics. [doi:10.1063/1.3687695]
Resumo:
The present study reports a two dimensional NMR experiment which separates single quantum spectra of enantiomers from that of a racemic mixture. This is a blend of selective double quantum refocusing, for resolving couplings and chemical shift interactions along two dimensions followed by correlation of the selectively excited protons to the entire coupled spin network. The concept is solely based on the presence of distinct intra methyl dipolar couplings of different enantiomers when dissolved in chiral orienting media. The analysis of single enantiomer spectrum obtained from respective F-2 cross sections yield all the spectral information. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We propose an iterative algorithm to simulate the dynamics generated by any n-qubit Hamiltonian. The simulation entails decomposing the unitary time evolution operator U (unitary) into a product of different time-step unitaries. The algorithm product-decomposes U in a chosen operator basis by identifying a certain symmetry of U that is intimately related to the number of gates in the decomposition. We illustrate the algorithm by first obtaining a polynomial decomposition in the Pauli basis of the n-qubit quantum state transfer unitary by Di Franco et al. [Phys. Rev. Lett. 101, 230502 (2008)] that transports quantum information from one end of a spin chain to the other, and then implement it in nuclear magnetic resonance to demonstrate that the decomposition is experimentally viable. We further experimentally test the resilience of the state transfer to static errors in the coupling parameters of the simulated Hamiltonian. This is done by decomposing and simulating the corresponding imperfect unitaries.
Resumo:
A finite-element scheme based on a coupled arbitrary Lagrangian-Eulerian and Lagrangian approach is developed for the computation of interface flows with soluble surfactants. The numerical scheme is designed to solve the time-dependent Navier-Stokes equations and an evolution equation for the surfactant concentration in the bulk phase, and simultaneously, an evolution equation for the surfactant concentration on the interface. Second-order isoparametric finite elements on moving meshes and second-order isoparametric surface finite elements are used to solve these equations. The interface-resolved moving meshes allow the accurate incorporation of surface forces, Marangoni forces and jumps in the material parameters. The lower-dimensional finite-element meshes for solving the surface evolution equation are part of the interface-resolved moving meshes. The numerical scheme is validated for problems with known analytical solutions. A number of computations to study the influence of the surfactants in 3D-axisymmetric rising bubbles have been performed. The proposed scheme shows excellent conservation of fluid mass and of the total mass of the surfactant. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
We study the quenching dynamics of a many-body system in one dimension described by a Hamiltonian that has spatial periodicity. Specifically, we consider a spin-1/2 chain with equal xx and yy couplings and subject to a periodically varying magnetic field in the (z) over cap direction or, equivalently, a tight-binding model of spinless fermions with a periodic local chemical potential, having period 2q, where q is a positive integer. For a linear quench of the strength of the magnetic field (or chemical potential) at a rate 1/tau across a quantum critical point, we find that the density of defects thereby produced scales as 1/tau(q/(q+1)), deviating from the 1/root tau scaling that is ubiquitous in a range of systems. We analyze this behavior by mapping the low-energy physics of the system to a set of fermionic two-level systems labeled by the lattice momentum k undergoing a nonlinear quench as well as by performing numerical simulations. We also show that if the magnetic field is a superposition of different periods, the power law depends only on the smallest period for very large values of tau, although it may exhibit a crossover at intermediate values of tau. Finally, for the case where a zz coupling is also present in the spin chain, or equivalently, where interactions are present in the fermionic system, we argue that the power associated with the scaling law depends on a combination of q and the interaction strength.
Resumo:
A robust numerical solution of the input voltage equations (IVEs) for the independent-double-gate metal-oxide-semiconductor field-effect transistor requires root bracketing methods (RBMs) instead of the commonly used Newton-Raphson (NR) technique due to the presence of nonremovable discontinuity and singularity. In this brief, we do an exhaustive study of the different RBMs available in the literature and propose a single derivative-free RBM that could be applied to both trigonometric and hyperbolic IVEs and offers faster convergence than the earlier proposed hybrid NR-Ridders algorithm. We also propose some adjustments to the solution space for the trigonometric IVE that leads to a further reduction of the computation time. The improvement of computational efficiency is demonstrated to be about 60% for trigonometric IVE and about 15% for hyperbolic IVE, by implementing the proposed algorithm in a commercial circuit simulator through the Verilog-A interface and simulating a variety of circuit blocks such as ring oscillator, ripple adder, and twisted ring counter.
Resumo:
We have fabricated nano-Schottky diodes of CdTe QDs with platinum metal electrodes in metal-semiconductor-metal planar configuration by drop-casting. The observed high value of ideality factor (13.3) of the diode was possibly due to the presence of defects in colloidal QDs. We observed asymmetry and non-linear nature of I-V characteristics between forward and reverse directions, which has been explained in terms of size distributions of quantum dots due to coffee ring effect. Copyright 2011 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. doi:10.1063/1.3669408]
Resumo:
This paper proposes a current-error space-vector-based hysteresis controller with online computation of boundary for two-level inverter-fed induction motor (IM) drives. The proposed hysteresis controller has got all advantages of conventional current-error space-vector-based hysteresis controllers like quick transient response, simplicity, adjacent voltage vector switching, etc. Major advantage of the proposed controller-based voltage-source-inverters-fed drive is that phase voltage frequency spectrum produced is exactly similar to that of a constant switching frequency space-vector pulsewidth modulated (SVPWM) inverter. In this proposed hysteresis controller, stator voltages along alpha- and beta-axes are estimated during zero and active voltage vector periods using current errors along alpha- and beta-axes and steady-state model of IM. Online computation of hysteresis boundary is carried out using estimated stator voltages in the proposed hysteresis controller. The proposed scheme is simple and capable of taking inverter upto six-step-mode operation, if demanded by drive system. The proposed hysteresis-controller-based inverter-fed drive scheme is experimentally verified. The steady state and transient performance of the proposed scheme is extensively tested. The experimental results are giving constant frequency spectrum for phase voltage similar to that of constant frequency SVPWM inverter-fed drive.
Resumo:
The photoluminescence study of Fermi-edge singularity (FES) in modulation-doped pseudomorphic AlxGa1-xAs/InyGa1-yAs/GaAs quantum well (QW) heterostructures is presented. In the above QW structures the optical transitions between n = 1 and n = 2 electronic subband to the n = 1 heavy hole subband (E-11 and E-21 transitions, respectively) are observed with FES appearing as a lower energy shoulder to the E-21 transition. The observed FES is attributed to the Fermi wave vector in the first electronic subband under the conditions of population of the second electronic subband. The FES appears at about 10 meV below E-21 transition around 4.2 K. Initially it gets stronger with increasing temperature and becomes a distinct peak at about 20 K. Further increase in temperature quenches FES and reaches the base line at around 40 K.
Resumo:
The Morse-Smale complex is a topological structure that captures the behavior of the gradient of a scalar function on a manifold. This paper discusses scalable techniques to compute the Morse-Smale complex of scalar functions defined on large three-dimensional structured grids. Computing the Morse-Smale complex of three-dimensional domains is challenging as compared to two-dimensional domains because of the non-trivial structure introduced by the two types of saddle criticalities. We present a parallel shared-memory algorithm to compute the Morse-Smale complex based on Forman's discrete Morse theory. The algorithm achieves scalability via synergistic use of the CPU and the GPU. We first prove that the discrete gradient on the domain can be computed independently for each cell and hence can be implemented on the GPU. Second, we describe a two-step graph traversal algorithm to compute the 1-saddle-2-saddle connections efficiently and in parallel on the CPU. Simultaneously, the extremasaddle connections are computed using a tree traversal algorithm on the GPU.
Resumo:
We address a physically based analytical model of quantum capacitance (C-Q) in a bilayer graphene nanoribbon (BGN) under the application of an external longitudinal static bias. We demonstrate that as the gap (Delta) about the Dirac point increases, a phenomenological population inversion of the carriers in the two sets of subbands occurs. This results in a periodic and composite oscillatory behavior in the C-Q with the channel potential, which also decreases with increase in Delta. We also study the quantum size effects on the C-Q, which signatures heavy spatial oscillations due to the occurrence of van Hove singularities in the total density-of-states function of both the sets of subbands. All the mathematical results as derived in this paper converge to the corresponding well-known solution of graphene under certain limiting conditions and this compatibility is an indirect test of our theoretical formalism. (C) 2012 Elsevier By. All rights reserved.
Resumo:
The evolution of entanglement in a 3-spin chain with nearest-neighbor Heisenberg-XY interactions for different initial states is investigated here. In an NMR experimental implementation, we generate multipartite entangled states starting from initial separable pseudo-pure states by simulating nearest-neighbor XY interactions in a 3-spin linear chain of nuclear spin qubits. For simulating XY interactions, we follow algebraic method of Zhang et al. Phys. Rev. A 72 (2005) 012331]. Bell state between end qubits has been generated by using only the unitary evolution of the XY Hamiltonian. For generating W-state and GHZ-state a single qubit rotation is applied on second and all the three qubits, respectively after the unitary evolution of the XY Hamiltonian.
Resumo:
The spatial search problem on regular lattice structures in integer number of dimensions d >= 2 has been studied extensively, using both coined and coinless quantum walks. The relativistic Dirac operator has been a crucial ingredient in these studies. Here, we investigate the spatial search problem on fractals of noninteger dimensions. Although the Dirac operator cannot be defined on a fractal, we construct the quantum walk on a fractal using the flip-flop operator that incorporates a Klein-Gordon mode. We find that the scaling behavior of the spatial search is determined by the spectral (and not the fractal) dimension. Our numerical results have been obtained on the well-known Sierpinski gaskets in two and three dimensions.
Resumo:
We investigate evolution of quantum correlations in ensembles of two-qubit nuclear spin systems via nuclear magnetic resonance techniques. We use discord as a measure of quantum correlations and the Werner state as an explicit example. We, first, introduce different ways of measuring discord and geometric discord in two-qubit systems and then describe the following experimental studies: (a) We quantitatively measure discord for Werner-like states prepared using an entangling pulse sequence. An initial thermal state with zero discord is gradually and periodically transformed into a mixed state with maximum discord. The experimental and simulated behavior of rise and fall of discord agree fairly well. (b) We examine the efficiency of dynamical decoupling sequences in preserving quantum correlations. In our experimental setup, the dynamical decoupling sequences preserved the traceless parts of the density matrices at high fidelity. But they could not maintain the purity of the quantum states and so were unable to keep the discord from decaying. (c) We observe the evolution of discord for a singlet-triplet mixed state during a radio-frequency spin-lock. A simple relaxation model describes the evolution of discord, and the accompanying evolution of fidelity of the long-lived singlet state, reasonably well.