502 resultados para heat stability
Resumo:
This paper presents a new approach to the location of fault in the high voltage power transmission system using Support Vector Machines (SVMs). A knowledge base is developed using transient stability studies for apparent impedance swing trajectory in the R-X plane. SVM technique is applied to identify the fault location in the system. Results are presented on sample 3-power station, a 9-bus system illustrate the implementation of the proposed method.
Resumo:
An algorithm for optimal allocation of reactive power in AC/DC system using FACTs devices, with an objective of improving the voltage profile and also voltage stability of the system has been presented. The technique attempts to utilize fully the reactive power sources in the system to improve the voltage stability and profile as well as meeting the reactive power requirements at the AC-DC terminals to facilitate the smooth operation of DC links. The method involves successive solution of steady-state power flows and optimization of reactive power control variables with Unified Power Flow Controller (UPFC) using linear programming technique. The proposed method has been tested on a real life equivalent 96-bus AC and a two terminal DC system under normal and contingency conditions.
Resumo:
We develop a multi-class discrete-time processor-sharing queueing model for scheduled message communication over a discrete memoryless degraded broadcast channel. The framework we consider here models both the random message arrivals and the subsequent reliable communication by suitably combining techniques from queueing theory and information theory. Requests for message transmissions are assumed to arrive according to i.i.d. arrival processes. Then, (i) we derive an outer bound to the stability region of message arrival rate vectors achievable by the class of stationary scheduling policies, (ii) we show for any message arrival rate vector that satisfies the outer bound, that there exists a stationary "state-independent" policy that results in a stable system for the corresponding message arrival processes, and (iii) under an asymptotic regime, we show that the stability region of information arrival rate vectors is the information-theoretic capacity region of a degraded broadcast channel.
Resumo:
The linear stability analysis of a plane Couette flow of viscoelastic fluid have been studied with the emphasis on two dimensional disturbances with wave number k similar to Re-1/2, where Re is Reynolds number based on maximum velocity and channel width. We employ three models to represent the dilute polymer solution: the classical Oldroyd-B model, the Oldroyd-B model with artificial diffusivity and the non-homogeneous polymer model. The result of the linear stability analysis is found to be sensitive to the polymer model used. While the plane Couette flow is found to be stable to infinitesimal disturbances for the first two models, the last one exhibits a linear instability.
Resumo:
We have identified a novel gene, trishanku (triA), by random insertional mutagenesis of Dictyostelium discoideum. TriA is a Broad complex Tramtrack bric-a-brac domain-containing protein that is expressed strongly during the late G2 phase of cell cycle and in presumptive spore (prespore (psp)) cells. Disrupting triA destabilizes cell fate and reduces aggregate size; the fruiting body has a thick stalk, a lowered spore: stalk ratio, a sub-terminal spore mass and small, rounded spores. These changes revert when the wild-type triA gene is re-expressed under a constitutive or a psp-specific promoter. By using short- and long-lived reporter proteins, we show that in triA(-) slugs the prestalk (pst)/psp proportion is normal, but that there is inappropriate transdifferentiation between the two cell types. During culmination, regardless of their current fate, all cells with a history of pst gene expression contribute to the stalk, which could account for the altered cell-type proportion in the mutant.
Resumo:
Aerodynamic forces and fore-body convective surface heat transfer rates over a 60 degrees apex-angle blunt cone have been simultaneously measured at a nominal Mach number of 5.75 in the hypersonic shock tunnel HST2. An aluminum model incorporating a three-component accelerometer-based balance system for measuring the aerodynamic forces and an array of platinum thin-film gauges deposited on thermally insulating backing material flush mounted on the model surface is used for convective surface heat transfer measurement in the investigations. The measured value of the drag coefficient varies by about +/-6% from the theoretically estimated value based on the modified Newtonian theory, while the axi-symmetric Navier-Stokes computations overpredict the drag coefficient by about 9%. The normalized values of measured heat transfer rates at 0 degrees angle of attack are about 11% higher than the theoretically estimated values. The aerodynamic and the heat transfer data presented here are very valuable for the validation of CFD codes used for the numerical computation of How fields around hypersonic vehicles.
Resumo:
The problem of homogeneous solid propellant combustion instability is studied with a one-dimensional flame model, including the effects of gas-phase thermal inertia and nonlinearity. Computational results presented in this paper show nonlinear instabilities inherent in the equations, due to which periodic burning is found even under steady ambient conditions such as pressure. The stability boundary is obtained in terms of Denison-Baum parameters. It is found that inclusion of gas-phase thermal inertia stabilizes the combustion. Also, the effect of a distributed heat release in the gas phase, compared to the flame sheet model, is to destabilize the burning. Direct calculations for finite amplitude pressure disturbances show that two distinct resonant modes exist, the first one near the natural frequency as obtained from intrinsic instability analysis and a second mode occurring at a much higher driving frequency. It is found that er rn in the low frequency region, the response of the propellant is significantly affected by the specific type of gas-phase chemical heat-release model employed. Examination of frequency response function reveals that the role of gas-phase thermal inertia is to stabilize the burning near the first resonant mode. Calculations made for different amplitudes of driving pressure show that the mean burning rate decreases with increasing amplitude. Also, with an increase in the driving amplitude, higher harmonics are generated in the burning rate.
Resumo:
This paper analyzes the L2 stability of solutions of systems with time-varying coefficients of the form [A + C(t)]x′ = [B + D(t)]x + u, where A, B, C, D are matrices. Following proof of a lemma, the main result is derived, according to which the system is L2 stable if the eigenvalues of the coefficient matrices are related in a simple way. A corollary of the theorem dealing with small periodic perturbations of constant coefficient systems is then proved. The paper concludes with two illustrative examples, both of which deal with the attitude dynamics of a rigid, axisymmetric, spinning satellite in an eccentric orbit, subject to gravity gradient torques.
Resumo:
The present study of the stability of systems governed by a linear multidimensional time-varying equation, which are encountered in spacecraft dynamics, economics, demographics, and biological systems, gives attention the lemma dealing with L(inf) stability of an integral equation that results from the differential equation of the system under consideration. Using the proof of this lemma, the main result on L(inf) stability is derived according; a corollary of the theorem deals with constant coefficient systems perturbed by small periodic terms. (O.C.)
Resumo:
The unsteady heat transfer associated with flow due to eccentrically rotating disks considered by Ramachandra Rao and Kasiviswanathan (1987) is studied via reformulation in terms of cylindrical polar coordinates. The corresponding exact solution of the energy equation is presented when the upper and lower disks are subjected to steady and unsteady temperatures. For an unsteady flow with nonzero mean, the energy equation can be solved by prescribing the temperature on the disk as a sum of steady and oscillatory parts
Resumo:
Recent trends in the use of dispersed solid electrolytes and auxiliary electrodes in galvanic cells have increased the need for assessment of materials compatibility. In the design of dispersed solid electrolytes, the potential reactions between the dispersoid and the matrix must be considered. In galvanic cells, possible interactions between the dispersoid and the electrode materials must also be considered in addition to ion exchange between the matrix and the electrode. When auxiliary electrodes, which convert the chemical potential of a component present at the electrode into an equivalent chemical potential of the neutral form of the migrating species in the solid electrolyte are employed, displacement reactions between phases in contact may limit the range of applicability of the cell. Examples of such constraints in the use of oxide dispersoids in fluoride solid electrolytes and NASICON/Na2S couple for measurement of sulphur potential are illustrated with the aid of Ellingham and stability field diagrams.
Resumo:
The change in the specific heat by the application of magnetic field up to 161 for high temperature superconductor system for DyBa2Cu3O7-x by Revaz et al. [23] is examined through the phenomenological Ginzburg-Landau(G-L) theory of anisotropic Type-II superconductors. The observed specific heat anomaly near T-c with magnetic field is explained qualitatively through the expression <Delta C > = (B-a/T-c) t/(1 - t)(alpha Theta(gamma)lambda(2)(m)(0)), which is the anisotropic formulation of the G-L theory in the London limit developed by Kogan and coworkers; relating to the change in specific heat Delta C for the variation of applied magnetic field for different orientations with c-axis. The analysis of this equation explains satisfactorily the specific heat anomaly near T-c and determines the anisotropic ratio gamma as 5.608, which is close to the experimental value 5.3 +/- 0.5given in the paper of Revaz et al. for this system. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Silicon dioxide films are extensively used as protective, barrier and also low index films in multilayer optical devices. In this paper, the optical properties of electron beam evaporated SiO2 films, including absorption in the UV, visible and IR regions, are reported as a function of substrate temperature and post-deposition heat treatment. A comparative study of the optical properties of SiO2 films deposited in neutral and ionized oxygen is also made.