378 resultados para Spin-orbit coupling
Resumo:
We derive the Langevin equations for a spin interacting with a heat bath, starting from a fully dynamical treatment. The obtained equations are non-Markovian with multiplicative fluctuations and concommitant dissipative terms obeying the fluctuation-dissipation theorem. In the Markovian limit our equations reduce to the phenomenological equations proposed by Kubo and Hashitsume. The perturbative treatment on our equations lead to Landau-Lifshitz equations and to other known results in the literature.
Resumo:
The effect of dipolar cross correlation in 1H---1H nuclear Overhauser effect experiments is investigated by detailed calculation in an ABX spin system. It is found that in weakly coupled spin systems, the cross-correlation effects are limited to single-quantum transition probabilities and decrease in magnitude as ωτc increases. Strong coupling, however, mixes the states and the cross correlations affect the zero-quantum and double-quantum transition probabilities as well. The effect of cross correlation in steady-state and transient NOE experiments is studied as a function of strong coupling and ωτc. The results for steady-state NOE experiments are calculated analytically and those for transient NOE experiments are calculated numerically. The NOE values for the A and B spins have been calculated by assuming nonselective perturbation of all the transitions of the X spin. A significant effect of cross correlation is found in transient NOE experiments of weakly as well as strongly coupled spins when the multiplets are resolved. Cross correlation manifests itself largely as a multiplet effect in the transient NOE of weakly coupled spins for nonselective perturbation of all X transitions. This effect disappears for a measuring pulse of 90° or when the multiplets are not resolved. For steady-state experiments, the effect of cross correlation is analytically zero for weakly coupled spins and small for strongly coupled spins.
Resumo:
Theoretical calculations of the geminal carbonyl-13C- proton coupling constant, 2J(C′H), in α-amino acids have been carried out using Dirac Vector model and Penney-Dirac bond order formulations. The results indicate that the couplings are dependent on the backbone torsion angle psi (ψ) of the amino acid residues in peptides. The meagre available experimental data seem to support the theoretical findings.
Resumo:
Transitions from the low-to the high-spin state in Fe2+ and Co3+ compounds have been examined by X-ray and UV photoelectron spectroscopy. It has been shown that the core-level bands in XPES, in particular the metal 3s band, as well as the valence bands, are diagnosis in the study of spin-state transitions.
Resumo:
We study a one-dimensional version of the Kitaev model on a ring of size N, in which there is a spin S > 1/2 on each site and the Hamiltonian is J Sigma(nSnSn+1y)-S-x. The cases where S is integer and half-odd integer are qualitatively different. We show that there is a Z(2)-valued conserved quantity W-n for each bond (n, n + 1) of the system. For integer S, the Hilbert space can be decomposed into 2N sectors, of unequal sizes. The number of states in most of the sectors grows as d(N), where d depends on the sector. The largest sector contains the ground state, and for this sector, for S=1, d=(root 5+1)/2. We carry out exact diagonalization for small systems. The extrapolation of our results to large N indicates that the energy gap remains finite in this limit. In the ground-state sector, the system can be mapped to a spin-1/2 model. We develop variational wave functions to study the lowest energy states in the ground state and other sectors. The first excited state of the system is the lowest energy state of a different sector and we estimate its excitation energy. We consider a more general Hamiltonian, adding a term lambda Sigma W-n(n), and show that this has gapless excitations in the range lambda(c)(1)<=lambda <=lambda(c)(2). We use the variational wave functions to study how the ground-state energy and the defect density vary near the two critical points lambda(c)(1) and lambda(c)(2).
Resumo:
A Geodesic Constant Method (GCM) is outlined which provides a common approach to ray tracing on quadric cylinders in general, and yields all the surface ray-geometric parameters required in the UTD mutual coupling analysis of conformal antenna arrays in the closed form. The approach permits the incorporation of a shaping parameter which permits the modeling of quadric cylindrical surfaces of desired sharpness/flatness with a common set of equations. The mutual admittance between the slots on a general parabolic cylinder is obtained as an illustration of the applicability of the GCM.
Resumo:
In this note we demonstrate the use of top polarization in the study of t (t) over bar resonances at the LHC, in the possible case where the dynamics implies a non-zero top polarization. As a probe of top polarization we construct an asymmetry in the decay-lepton azimuthal angle distribution (corresponding to the sign of cos phi(l)) in the laboratory. The asymmetry is non-vanishing even for a symmetric collider like the LHC, where a positive z axis is not uniquely defined. The angular distribution of the leptons has the advantage of being a faithful top-spin analyzer, unaffected by possible anomalous tbW couplings, to linear order. We study, for purposes of demonstration, the case of a Z' as might exist in the little Higgs models. We identify kinematic cuts which ensure that our asymmetry reflects the polarization in sign and magnitude. We investigate possibilities at the LHC with two energy options: root s = 14TeV and root s = 7TeV, as well as at the Tevatron. At the LHC the model predicts net top quark polarization of the order of a few per cent for M-Z' similar or equal to 1200GeV, being as high as 10% for a smaller mass of the Z' of 700GeV and for the largest allowed coupling in the model, the values being higher for the 7TeV option. These polarizations translate to a deviation from the standard-model value of azimuthal asymmetry of up to about 4% (7%) for 14 (7) TeV LHC, whereas for the Tevatron, values as high as 12% are attained. For the 14TeV LHC with an integrated luminosity of 10 fb(-1), these numbers translate into a 3 sigma sensitivity over a large part of the range 500 less than or similar to M-Z' less than or similar to 1500GeV.
Resumo:
Infrared spectroscopy provides a valuable tool to investigate the spin-state transition in Fe(II) complexes of the type Fe(Phen)2(NCS)2. With progressive substitution of Fe by Mn, the first-order transition changes over to a second-order transition, with a high residual population of the high-spin state even at very low temperatures
Resumo:
Potential transients are obtained by using “Padé approximants” (an accurate approximation procedure valid globally — not just perturbatively) for all amplitudes of concentration polarization and current densities. This is done for several mechanistic schemes under constant current conditions. We invert the non-linear current-potential relationship in the form (using the Lagrange or the Ramanujan method) of power series appropriate to the two extremes, namely near reversible and near irreversible. Transforming both into the Pad́e expressions, we construct the potential-time profile by retaining whichever is the more accurate of the two. The effectiveness of this method is demonstrated through illustrations which include couplings of homogeneous chemical reactions to the electron-transfer step.
Resumo:
A phenomenological model of spin sharing by the constituents of a proton is constructed, based on the recent EMC measurement of the spin dependent structure function and knowledge of the unpolarized parton densities.
Resumo:
The aim of this paper is to construct a nonequilibrium statistical‐mechanics theory to study hysteresis in ferromagnetic systems. We study the hysteretic response of model spin systems to periodic magnetic fields H(t) as a function of the amplitude H0 and frequency Ω. At fixed H0, we find conventional, squarelike hysteresis loops at low Ω, and rounded, roughly elliptical loops at high Ω, in agreement with experiments. For the O(N→∞), d=3, (Φ2)2 model with Langevin dynamics, we find a novel scaling behavior for the area A of the hysteresis loop, of the form A∝H0.660Ω0.33. We carry out a Monte Carlo simulation of the hysteretic response of the two‐dimensional, nearest‐neighbor, ferromagnetic Ising model. These results agree qualitatively with the results obtained for the O(N) model.
Resumo:
The nuclear Overhauser effect equations are solved analytically for a homonuclear group of spins whose sites are periodically arranged, including the special cases where the spins lie at the vertices of a regular polygon and on a one-dimensional lattice. t is shown that, for long correlation times, the equations governing magnetization transfer resemble a diffusion equation. Furthermore the deviation from exact diffusion is quantitatively related to the molecular tumbling correlation time. Equations are derived for the range of magnetization travel subsequent to the perturbation of a single spin in a lattice for both the case of strictly dipolar relaxation and the more general situation where additional T1 mechanisms may be active. The theory given places no restrictions on the delay (or mixing) times, and it includes all the spins in the system. Simulations are presented to confirm the theory.