242 resultados para Serum proteins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

New C-13-detected NMR experiments have been devised for molecules in solution and solid state, which provide chemical shift correlations of methyl groups with high resolution, selectivity and sensitivity. The experiments achieve selective methyl detection by exploiting the one bond J-coupling between the C-13-methyl nucleus and its directly attached C-13 spin in a molecule. In proteins such correlations edit the C-13-resonances of different methyl containing residues into distinct spectral regions yielding a high resolution spectrum. This has a range of applications as exemplified for different systems such as large proteins, intrinsically disordered polypeptides and proteins with a paramagnetic centre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: Background: Most signalling and regulatory proteins participate in transient protein-protein interactions during biological processes. They usually serve as key regulators of various cellular processes and are often stable in both protein-bound and unbound forms. Availability of high-resolution structures of their unbound and bound forms provides an opportunity to understand the molecular mechanisms involved. In this work, we have addressed the question "What is the nature, extent, location and functional significance of structural changes which are associated with formation of protein-protein complexes?" Results: A database of 76 non-redundant sets of high resolution 3-D structures of protein-protein complexes, representing diverse functions, and corresponding unbound forms, has been used in this analysis. Structural changes associated with protein-protein complexation have been investigated using structural measures and Protein Blocks description. Our study highlights that significant structural rearrangement occurs on binding at the interface as well as at regions away from the interface to form a highly specific, stable and functional complex. Notably, predominantly unaltered interfaces interact mainly with interfaces undergoing substantial structural alterations, revealing the presence of at least one structural regulatory component in every complex. Interestingly, about one-half of the number of complexes, comprising largely of signalling proteins, show substantial localized structural change at surfaces away from the interface. Normal mode analysis and available information on functions on some of these complexes suggests that many of these changes are allosteric. This change is largely manifest in the proteins whose interfaces are altered upon binding, implicating structural change as the possible trigger of allosteric effect. Although large-scale studies of allostery induced by small-molecule effectors are available in literature, this is, to our knowledge, the first study indicating the prevalence of allostery induced by protein effectors. Conclusions: The enrichment of allosteric sites in signalling proteins, whose mutations commonly lead to diseases such as cancer, provides support for the usage of allosteric modulators in combating these diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The methanol-inducible alcohol oxidase I (AOXI) promoter of the methylotrophic yeast, Pichia pastoris, is used widely for the production of recombinant proteins. AOXI transcription is regulated by the zinc finger protein Mxr1p (methanol expression regulator 1). ROP (repressor of phosphoenolpyruvate carboxykinase, PEPCK) is a methanol- and biotin starvation-inducible zinc finger protein that acts as a negative regulator of PEPCK in P. pastoris cultured in biotin-deficient, glucose-ammonium medium. The function of ROP during methanol metabolism is not known. In this study, we demonstrate that ROP represses methanol-inducible expression of AOXI when P. pastoris is cultured in a nutrient-rich medium containing yeast extract, peptone, and methanol (YPM). Deletion of the gene encoding ROP results in enhanced expression of AOXI and growth promotion whereas overexpression of ROP results in repression of AOXI and growth retardation of P. pastoris cultured in YPM medium. Surprisingly, deletion or overexpression of ROP has no effect on AOXI gene expression and growth of P. pastoris cultured in a minimal medium containing yeast nitrogen base and methanol (YNBM). Subcellular localization studies indicate that ROP translocates from cytosol to nucleus of cells cultured in YPM but not YNBM. In vitro DNA binding studies indicate that AOXI promoter sequences containing 5' CYCCNY 3' motifs serve as binding sites for Mxr1p as well as ROP. Thus, Mxr1p and ROP exhibit the same DNA binding specificity but regulate methanol metabolism antagonistically in P. pastoris. This is the first report on the identification of a transcriptional repressor of methanol metabolism in any yeast species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intrinsically disordered proteins, IDPs, are proteins that lack a rigid 3D structure under physiological conditions, at least in vitro. Despite the lack of structure, IDPs play important roles in biological processes and transition from disorder to order upon binding to their targets. With multiple conformational states and rapid conformational dynamics, they engage in myriad and often ``promiscuous'' interactions. These stochastic interactions between IDPs and their partners, defined here as conformational noise, is an inherent characteristic of IDP interactions. The collective effect of conformational noise is an ensemble of protein network configurations, from which the most suitable can be explored in response to perturbations, conferring protein networks with remarkable flexibility and resilience. Moreover, the ubiquitous presence of IDPs as transcriptional factors and, more generally, as hubs in protein networks, is indicative of their role in propagation of transcriptional (genetic) noise. As effectors of transcriptional and conformational noise, IDPs rewire protein networks and unmask latent interactions in response to perturbations. Thus, noise-driven activation of latent pathways could underlie state-switching events such as cellular transformation in cancer. To test this hypothesis, we created a model of a protein network with the topological characteristics of a cancer protein network and tested its response to a perturbation in presence of IDP hubs and conformational noise. Because numerous IDPs are found to be epigenetic modifiers and chromatin remodelers, we hypothesize that they could further channel noise into stable, heritable genotypic changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A palindrome is a set of characters that reads the same forwards and backwards. Since the discovery of palindromic peptide sequences two decades ago, little effort has been made to understand its structural, functional and evolutionary significance. Therefore, in view of this, an algorithm has been developed to identify all perfect palindromes (excluding the palindromic subset and tandem repeats) in a single protein sequence. The proposed algorithm does not impose any restriction on the number of residues to be given in the input sequence. This avant-garde algorithm will aid in the identification of palindromic peptide sequences of varying lengths in a single protein sequence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p53 mRNA has been shown to be translated into two isoforms, full-length p53 (FL-p53) and a truncated isoform Delta N-p53, which modulates the functions of FL-p53 and also has independent functions. Previously, we have shown that translation of p53 and Delta N-p53 can be initiated at Internal Ribosome Entry Sites (IRES). These two IRESs were shown to regulate the translation of p53 and Delta N-p53 in a distinct cell-cycle phase-dependent manner. Earlier observations from our laboratory also suggest that the structural integrity of the p53 RNA is critical for IRES function and is compromised by mutations that affect the structure as well as RNA protein interactions. In the current study, using RNA affinity approach we have identified Annexin A2 and PTB associated Splicing Factor (PSF/SFPQ) as novel ITAFs for p53 IRESs. We have showed that the purified Annexin A2 and PSF proteins specifically bind to p53 IRES elements. Interestingly, in the presence of calcium ions Annexin A2 showed increased binding with p53 IRES. Immunopulldown experiments suggest that these two proteins associate with p53 mRNA ex vivo as well. Partial knockdown of Annexin A2 and PSF showed decrease in p53 IRES activity and reduced levels of both the p53 isoforms. More importantly the interplay between Annexin A2, PSF and PTB proteins for binding to p53mRNA appears to play a crucial role in IRES function. Taken together, our observations suggest pivotal role of two new trans-acting factors in regulating the p53-IRES function, which in turn influences the synthesis of p53 isoforms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in circulating miRNA profiles have been associated with different diseases. Here we demonstrate the circulating miRNA profile in serum of HCV infected individuals using a microRNA array that profiles the expression of 940 miRNAs. Serum samples from two HCV genotype -1 and two HCV genotype -3 infected individuals were compared with healthy controls. Expression levels of miR-134, miR-198, miR-320c and miR-483-5p that were commonly upregulated in case of both genotypes were validated in 36 individual patient serum samples. Serum miR-134, miR-320c and miR-483-5p were significantly upregulated during HCV infection. miR-320c and miR-483-5p were also upregulated in HCV-JFH1 infected cells and cell culture supernatant. Pathway analysis of putative target genes of these miRNAs indicated involvement of PI3K-Akt, NFKB and MAPK signaling pathways. Results revealed novel insights on the role of circulating miRNAs in mediating pathogenesis in HCV-infected cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium tuberculosis, the causative agent of tuberculosis, is at increased risk of accumulating damaged guanine nucleotides such as 8-oxo-dGTP and 8-oxo-GTP because of its residency in the oxidative environment of the host macrophages. By hydrolyzing the oxidized guanine nucleotides before their incorporation into nucleic acids, MutT proteins play a critical role in allowing organisms to avoid their deleterious effects. Mycobacteria possess several MutT proteins. Here, we purified recombinant M. tuberculosis MutT2 (MtuMutT2) and M. smegmatis MutT2 (MsmMutT2) proteins from M. tuberculosis (a slow grower) and M. smegmatis (fast growing model mycobacteria), respectively, for their biochemical characterization. Distinct from the Escherichia coli MutT, which hydrolyzes 8-oxo-dGTP and 8-oxo-GTP, the mycobacterial proteins hydrolyze not only 8-oxo-dGTP and 8-oxo-GTP but also dCTP and 5-methyl-dCTP. Determination of kinetic parameters (K-m and V-max) revealed that while MtuMutT2 hydrolyzes dCTP nearly four times better than it does 8-oxo-dGTP, MsmMutT2 hydrolyzes them nearly equally. Also, MsmMutT2 is about 14 times more efficient than MtuMutT2 in its catalytic activity of hydrolyzing 8-oxo-dGTP. Consistent with these observations, MsmMutT2 but not MtuMutT2 rescues E. coli for MutT deficiency by decreasing both the mutation frequency and A-to-C mutations (a hallmark of MutT deficiency). We discuss these findings in the context of the physiological significance of MutT proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximately one third of the world population is infected with Mycobacterium tuberculosis, the causative agent of tuberculosis. A better understanding of the pathogen biology is crucial to develop new tools/strategies to tackle its spread and treatment. In the host macrophages, the pathogen is exposed to reactive oxygen species, known to damage dGTP and GTP to 8-oxo-dGTP and 8-oxo-GTP, respectively. Incorporation of the damaged nucleotides in nucleic acids is detrimental to organisms. MutT proteins, belonging to a class of Nudix hydrolases, hydrolyze 8-oxo-G nucleoside triphosphates/diphosphates to the corresponding nucleoside monophosphates and sanitize the nucleotide pool. Mycobacteria possess several MutT proteins. However, a functional homolog of Escherichia coli MutT has not been identified. Here, we characterized MtuMutT1 and Rv1700 proteins of M. tuberculosis. Unlike other MutT proteins, MtuMutT1 converts 8-oxo-dGTP to 8-oxo-dGDP, and 8-oxo-GTP to 8-oxo-GDP. Rv1700 then converts them to the corresponding nucleoside monophosphates. This observation suggests the presence of a two-stage mechanism of 8-oxo-dGTP/8-oxo-GTP detoxification in mycobacteria. MtuMutT1 converts 8-oxo-dGTP to 8-oxo-dGDP with a K-m of similar to 50 mu M and V-max of similar to 0.9 pmol/min per ng of protein, and Rv1700 converts 8-oxo-dGDP to 8-oxo-dGMP with a K-m of similar to 9.5 mu M and V-max of similar to 0.04 pmol/min per ng of protein. Together, MtuMutT1 and Rv1700 offer maximal rescue to E. coli for its MutT deficiency by decreasing A to C mutations (a hallmark of MutT deficiency). We suggest that the concerted action of MtuMutT1 and Rv1700 plays a crucial role in survival of bacteria against oxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Saccharomyces cerevisiae RAD50, MRE11, and XRS2 genes are essential for telomere length maintenance, cell cycle checkpoint signaling, meiotic recombination, and DNA double-stranded break (DSB) repair via nonhomologous end joining and homologous recombination. The DSB repair pathways that draw upon Mre11-Rad50-Xrs2 subunits are complex, so their mechanistic features remain poorly understood. Moreover, the molecular basis of DSB end resection in yeast mre11-nuclease deficient mutants and Mre11 nuclease-independent activation of ATM in mammals remains unknown and adds a new dimension to many unanswered questions about the mechanism of DSB repair. Here, we demonstrate that S. cerevisiae Mre11 (ScMre11) exhibits higher binding affinity for single-over double-stranded DNA and intermediates of recombination and repair and catalyzes robust unwinding of substrates possessing a 3' single-stranded DNA overhang but not of 5' overhangs or blunt-ended DNA fragments. Additional evidence disclosed that ScMre11 nuclease activity is dispensable for its DNA binding and unwinding activity, thus uncovering the molecular basis underlying DSB end processing in mre11 nuclease deficient mutants. Significantly, Rad50, Xrs2, and Sae2 potentiate the DNA unwinding activity of Mre11, thus underscoring functional interaction among the components of DSB end repair machinery. Our results also show that ScMre11 by itself binds to DSB ends, then promotes end bridging of duplex DNA, and directly interacts with Sae2. We discuss the implications of these results in the context of an alternative mechanism for DSB end processing and the generation of single-stranded DNA for DNA repair and homologous recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disulfide crosslinks are ubiquitous in natural peptides and proteins, providing rigidity to polypeptide scaffolds. The assignment of disulfide connectivity in multiple crosslinked systems is often difficult to achieve. Here, we show that rapid unambiguous characterisation of disulfide connectivity can be achieved through direct mass spectrometric CID fragmentation of the disulfide intact polypeptides. The method requires a direct mass spectrometric fragmentation of the native disulfide bonded polypeptides and subsequent analysis using a newly developed program, DisConnect. Technical difficulties involving direct fragmentation of proteins are surmounted by an initial proteolytic nick and subsequent determination of the structures of these proteolytic peptides through DisConnect. While the connectivity in proteolytic fragments containing one cystine is evident from the MS profile alone, those with multiple cystines are subjected to subsequent mass spectrometric fragmentation. The wide applicability of this method is illustrated using examples of peptide hormones, peptide toxins, proteins, and disulfide foldamers of a synthetic analogue of a marine peptide toxin. The method, coupled with DisConnect, provides an unambiguous, straightforward approach, especially useful for the rapid screening of the disulfide crosslink fidelity in recombinant proteins, determination of disulfide linkages in natural peptide toxins and characterization of folding intermediates encountered in oxidative folding pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genomic data of several organisms have revealed the presence of a vast repertoire of multi-domain proteins. The role played by individual domains in a multi-domain protein has a profound influence on the overall function of the protein. In the present analysis an attempt has been made to better understand the tethering preferences of domain families that occur in multi-domain proteins. The analysis has been carried out on an exhaustive dataset of 2 961 898 sequences of proteins from 930 organisms, where 741 274 proteins are comprised of at least two domain families. For every domain family, the number of other domain families with which it co-occurs within a protein in this dataset has been enumerated and is referred to as the tethering number of the domain family. It was found that, in the general dataset, the AAA ATPase family and the family of Ser/Thr kinases have the highest tethering numbers of 450 and 444 respectively. Further analysis reveals significant correlation between the number of members in a family and its tethering number. Positive correlation was also observed for the extent of a sequence and functional diversity within a family and the tethering numbers of domain families. Domain families that are present ubiquitously in diverse organisms tend to have large tethering numbers, while organism/kingdom-specific families have low tethering numbers. Thus, the analysis uncovers how domain families recombine and evolve to give rise to multi-domain proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the current study, the puckering states of the Proline ring occurring in diproline segments (LPro-LPro) in proteins has been investigated with a segregation made on the basis of cis and trans states for the Pro-Pro peptide bond and the conformational states for the diproline segment to investigate the effects of conformation of the diproline segment on the corresponding puckering state of the Proline ring in the segment if any. The value of the endocyclic ring torsional angles of the pyrrolidine ring has been used for calculating and visualizing various puckering states using a proposed new sign convention (+/-) nomenclature. The results have been compared to that obtained in a previous study on peptides from this group. In this study, quite interestingly, the Planar (G) conformation that was present in 14.3% of the cases in peptides, appears to be nearly a rare conformation in the case of proteins (1.9%). The present study indicates that the (C-exo/C-exo), (C-exo/Twisted C-exo-C-endo) and (Twisted C-endo-C-exo/Twisted C-endo-C-exo) categories are the most preferred combinations. For Proline rings in proteins, the states C-exo, Twisted C-exo-C-endo and Twisted C-endo-C-exo are the most preferred states. Within diproline segments, the pyrrolidine ring conformations do not show a strong co-relation to the backbone conformation in which they are observed. It is likely that five-membered rings have a considerable plasticity of structure and are readily deformed to accommodate a variety of energetically preferred backbone conformations.