201 resultados para RUTHENIUM(II) COMPLEX


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new Cu(II)-picolinate complex was synthesized and characterized by single crystal X-ray crystallography. The complex crystallizes in the centrosymmetric triclinic space group P (1) over bar (no. 2). Picolinate in the complex extends the neutral unit into a 1-D chain through mu(2)-bridging carboxylate. The complex has a hydrogen bonding acceptor in the second coordination sphere allowing lattice water to assemble neighboring chains. Water self-assembles to form a zig-zag 1-D chain. The adjacent chains are assembled by C-H center dot center dot center dot O interactions result in the formation 2-D hydrogen bonded network. The overall hydrogen bonding between water chain and Cu-picolinate network yields a 3-D hydrogen bonded coordination network. X-ray structural analysis, FTIR and thermal analysis have been used to characterize the reported compound in the solid state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iron(II) complexes Fe(L)(2)](2+) as perchlorate (1-3) and chloride (1a-3a) salts, where L is 4'-phenyl-2,2':6',2 `'-terpyridine (phtpy in 1, 1a), 4'-(9-anthracenyl)-2,2':6',2 `'-terpyridine (antpy in 2, 2a) and 4'-(1-pyrenyl)-2,2':6',2 `'-terpyridine (pytpy in 3, 3a), were prepared and their photocytotoxicity studied. The diamagnetic complexes 1-3 having an FeN6 core showed an Fe(III)-Fe(II) redox couple near 1.0 V vs. saturated calomel electrode in MeCN-0.1 M tetrabutylammonium perchlorate. Complexes 2 and 3, in addition, displayed a quasi-reversible ligand-based redox process near 0.0 V. The redox and spectral properties are rationalized from the theoretical studies. The complexes bind to DNA in a partial intercalative mode. The pytpy complex efficiently photo-cleaves DNA in green light via superoxide and hydroxyl radical formation. The antpy and pytpy complexes exhibited a remarkable photocytotoxic effect in HeLa cancer cells (IC50, similar to 9 mu M) in visible light (400-700 nm), while remaining essentially nontoxic in dark (IC50, similar to 90 mu M). Formation of reactive oxygen species (ROS) inside the HeLa cells was evidenced from the fluorescence enhancement of dichlorofluorescein upon treatment with the pytpy complex followed by photo-exposure. The antpy and pytpy complexes were used for cellular imaging. Confocal imaging and dual staining study using propidium iodide (PI) showed nuclear localization of the complexes. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New ternary copper (II) complexes, Cu(L-orn)(B)(Cl)](Cl center dot 2H(2)O) (1-2) where L-orn is L-ornithine, B is an N,N-donor heterocyclic base, viz. 2,2'-bipyridine (bpy, 1) and 1,10-phenanthroline (phen, 2), were synthesized and characterized by various spectroscopic techniques. Complex 2 is characterized by the X-ray single crystallographic method. The complex shows a distorted square-pyramidal (4 + 1) CuN3OCl coordination sphere. Binding interactions of the complexes with calf thymus DNA (CT-DNA) were investigated by UV-Vis absorption titration, ethidium bromide displacement assay, viscometric titration experiment and DNA melting studies. Complex 2 shows appreciable chemical nuclease activity in the presence of 3-mercaptopropionic acid (MPA). The complexes were subjected to in vitro cytotoxicity studies against carcinomic human alveolar basal epithelial cells (A-549) and human epithelial (HEp-2) cells. The IC50 values of 1 and 2 are less than that of cisplatin against HEp-2 cell lines. MIC values for 1 against the bacterial strains Streptococcus mutans and Pseudomonas aeruginosa are 0.5 mM. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A highly electrophilic ruthenium center in the RuCl(dppe)(2)]OTf] complex brings about the activation of the B H bond in ammonia borane (H3N center dot BH3, AB) and dimethylamine borane (Me2HN center dot BH3, DMAB). At room temperature, the reaction between RuCl(dppe)(2)]OTf] and AB or DMAB results in trans-RuH(eta(2)-H-2)(dppe)(2)]OTf] trans-RuCl(eta(2)-H-2)(dppe)(2)]OTf], and trans-RuH(Cl)(dppe)(2)], as noted in the NMR spectra. Mixing the ruthenium complex and AB or DMAB at low temperature (198/193 K) followed by NMR spectral measurements as the reaction mixture was warmed up to room temperature allowed the observation of various species formed enroute to the final products that were obtained at room temperature. On the basis of the variable-temperature multinuclear NMR spectroscopic studies of these two reactions, the mechanistic insights for B-H bond activation were obtained. In both cases, the reaction proceeds via an eta(1)-B-H moiety bound to the metal center. The detailed mechanistic pathways of these two reactions as studied by NMR spectroscopy are described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Topoisomerases (topos) maintain DNA topology and influence DNA transaction processes by catalysing relaxation, supercoiling and decatenation reactions. In the cellular milieu, division of labour between different topos ensures topological homeostasis and control of central processes. In Escherichia coli, DNA gyrase is the principal enzyme that carries out negative supercoiling, while topo IV catalyses decatenation, relaxation and unknotting. DNA gyrase apparently has the daunting task of undertaking both the enzyme functions in mycobacteria, where topo IV is absent. We have shown previously that mycobacterial DNA gyrase is an efficient decatenase. Here, we demonstrate that the strong decatenation property of the enzyme is due to its ability to capture two DNA segments in trans. Topo IV, a strong dedicated decatenase of E. coli, also captures two distinct DNA molecules in a similar manner. In contrast, E. coli DNA gyrase, which is a poor decatenase, does not appear to be able to hold two different DNA molecules in a stable complex. The binding of a second DNA molecule to GyrB/ParE is inhibited by ATP and the non-hydrolysable analogue, AMPPNP, and by the substitution of a prominent positively charged residue in the GyrB N-terminal cavity, suggesting that this binding represents a potential T-segment positioned in the cavity. Thus, after the GyrA/ParC mediated initial DNA capture, GyrB/ParE would bind efficiently to a second DNA in trans to form a T-segment prior to nucleotide binding and closure of the gate during decatenation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water soluble dinickel(II) complexes Ni-2(L)(2)(1-2)](NO3)(4) (1-2), where L1-2 are triazole based dinucleating ligands, were synthesized and characterized. The DNA binding, protein binding, DNA hydrolysis and anticancer properties were investigated. The interactions of complexes 1 and 2 with calf thymus DNA were studied by spectroscopic techniques, including absorption and fluorescence spectroscopy. The DNA binding constant values of the complexes 1 and 2 were found to be 2.36 x 10(5) and 4.87 x 10(5) M-1 and the binding affinities are in the following order: 2 > 1. Both the dinickel(II) complexes 1 and 2, promoted the hydrolytic cleavage of plasmid pBR322 DNA under both anaerobic and aerobic conditions. Kinetic data for DNA hydrolysis promoted by 1 and 2 under physiological conditions give the observed rate constants (k(obs)) of 5.05 +/- 0.2 and 5.65 +/- 0.1 h(-1), respectively, which shows 10(8)-fold rate acceleration over the uncatalyzed reaction of ds-DNA. Meanwhile, the interactions of the complex with BSA have also been studied by spectroscopy. Both the complexes 1 and 2 display strong binding propensity and the binding constant (K-b), number of binding sites (n) were obtained are 0.71 x 10(6) 1.47] and 5.62 x 10(6) 1.98] M-1, respectively. The complexes 1 and 2 also promoted the apoptosis against human carcinoma (HeLa, and BeWo) cancer cells. Cytotoxicity of the complexes was further confirmed by lactate dehydrogenase enzyme level in cancer cell lysate and content media. (c) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Engineering at the molecular level is one of the most exciting new developments for the generation of functional materials. However, the concept of designing polynuclear extended structures from bottom up is still not mature. Although progress has been made with secondary building units (SBUs) in metal organic frameworks (MOFs), the control seems to be just an illusion when it comes to bridging ligands such as the azide ion. When we say that the azido ligand is versatile in its bridging capabilities, what we mean is that it would be difficult to predict or control its bridging properties. However, this kind of serendipity is not always bad news. For example, scientists have shown that the azido ligand can mediate magnetic exchanges between paramagnetic metals in a predictable fashion (usually depending upon the bonding geometries). Therefore, it is a well-respected ligand in polynuclear assemblies. Serendipitous assemblies offer new magnetic structures that we may not otherwise even think about synthesizing. The azido ligand forms a variety of complexes with copper(II) using different blocking amines or pyridine based ligands. Its structural nature changes upon changing the substitution on amine, as well as the amount of blocking ligand. In principle, if we take any of these complexes and provide more coordination sites to the bridging azido ligands by removing a fraction of the blocking ligands, we can get new complexes with intricate structural networks and therefore different magnetic properties with the same components as used for the parent complex. In this Account, we mainly discuss the development of a number of new topological and magnetic exchange systems synthesized using this concept. Not all of these new complexes can be grouped according to their basic building structures or even by the ratio of the metal to blocking ligand. Therefore, we divided the discussion by the nuclearity of the basic building structures. Some of the complexes with the same nuclearities have very similar or even almost identical basic structures. However, the way these building units are joined together (by the azido bridges) to form the overall extended structures differ almost in every case. The complexes having the Cu-6 core are particularly interesting from a structural point of view. Although they have almost identical basic structures, some of them are extended in three dimensions, but two of them are extended in two dimensions by two different bridging networks. In the complexes having linear Cu-4 basic units, we find that using similar ligands does not always give the same bridging networks even within the basic building structures. These complexes have also enriched the field of molecular magnetism. One of the complexes with a Cu-3 building unit has provided us with the opportunity to study the competing behavior of two different kinds of magnetic exchange mechanism (ferromagnetic and antiferromagnetic) acting simultaneously between two metal ions. Through density functional theory calculations, we showed how they work independently and their additive nature to produce the overall effect. The exciting methodology for the generation of copper(II) polyclusters presented in this Account will provide the opportunity to explore analogous serendipitous assembly of diverse structures with interesting magnetic behavior using other transition metal ions having more than one unpaired electrons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Donor-acceptor-donor-structured thiophene derivative-based conducting polymer poly(7,9-dithiophene-2yl-8H-cyclopentaa]acenaphthalene-8-one) was chemically synthesized. This polymer was used to modify both glassy-carbon and carbon-paste electrode, which was used to detect lead(II) ions present in water in the range of 1 mM to 0.1 mu M. Cyclic voltammetry confirms the formation of the co-ordination complex between the soft segment of polymer and the dissolved lead ion. Anodic stripping voltammetry was carried out by the modified electrode to determine the lower limit of detection of dissolved lead(II) species in the solution. Differential adsorptive stripping and impedance measurements were also conducted to find the lowest possible response of the as-synthesized polymer to lead(II) ion in water. The electrochemical performance of the modified electrodes at different pH (4, 7 and 9) environments was carried out by stripping voltammetry, to get optimum sensitivity and stability under these conditions. Finally, interference analysis was carried out to detect the modified electrode's sensitivity towards lead ion affinity in water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Wilms tumor 1 gene (WT1) can either repress or induce the expression of genes. Inconsistent with its tumor suppressor role, elevated WT1 levels have been observed in leukemia and solid tumors. WT1 has also been suggested to act as an oncogene by inducing the expression of MYC and BCL-2. However, these are only the correlational studies, and no functional study has been performed to date. Consistent with its tumor suppressor role, CDC73 binds to RNA polymerase II as part of a PAF1 transcriptional regulatory complex and causes transcriptional repression of oncogenes MYC and CCND1. It also represses beta-catenin-mediated transcription. Based on the reduced level of CDC73 in oral squamous cell carcinoma (OSCC) samples in the absence of loss-of-heterozygosity, promoter methylation, and mutations, we speculated that an inhibitory transcription factor is regulating its expression. The bioinformatics analysis predicted WT1 as an inhibitory transcription factor to regulate the CDC73 level. Our results showed that overexpression of WT1 decreased CDC73 levels and promoted proliferation of OSCC cells. ChIP and EMSA results demonstrated binding of WT1 to the CDC73 promoter. The 5-azacytidine treatment of OSCC cells led to an up-regulation of WT1 with a concomitant down-regulation of CDC73, further suggesting regulation of CDC73 by WT1. Exogenous CDC73 attenuated the protumorigenic activity of WT1 by apoptosis induction. An inverse correlation between expression levels of CDC73 and WT1 was observed in OSCC samples. These observations indicated that WT1 functions as an oncogene by repressing the expression of CDC73 in OSCC. We suggest that targeting WT1 could be a therapeutic strategy for cancer, including OSCC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mono- and trinuclear copper(II) complexes with 2-1-(2-dimethylamino-ethylamino)-ethyl]-phenol (HL) have been synthesized and structurally characterized. The mononuclear complex Cu(L)(H2O)(ONO2)] (1) crystallizes in monoclinic space group P2(1) /n with a square pyramidal Cu(II) center coordinated by the tridentate Schiff base (L) and a water ligand in the equatorial plane and an oxygen atom from nitrate in the axial position. The trinuclear complex (CuL)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (2) crystallizes in hexagonal space group P6(3); all three copper atoms are five-coordinate with square pyramidal geometries. The interactions of these complexes with calf-thymus DNA have been investigated using absorption spectrophotometry. The mononuclear complex binds more strongly than the trinuclear complex. The DNA cleavage activity of these complexes has been studied on double-stranded pBR 322 plasmid DNA by gel electrophoresis experiments in the absence and in the presence of added oxidant (H2O2). The trinuclear complex cleaves DNA more efficiently than the mononuclear complex in the presence of H2O2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

m-AMSA, an established inhibitor of eukaryotic type II topoisomerases, exerts its cidal effect by binding to the enzyme-DNA complex thus inhibiting the DNA religation step. The molecule and its analogues have been successfully used as chemotherapeutic agents against different forms of cancer. After virtual screening using a homology model of the Mycobacterium tuberculosis topoisomerase I, we identified m-AMSA as a high scoring hit. We demonstrate that m-AMSA can inhibit the DNA relaxation activity of topoisomerase I from M. tuberculosis and Mycobacterium smegmatis. In a whole cell assay, m-AMSA inhibited the growth of both the mycobacteria. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three copper-azido complexes Cu-4(N-3)(8)(L-1)(2)(MeOH)(2)](n) (1), Cu-4(N-3)(8)(L-1)(2)] (2), and Cu-5(N-3)(10)(L-1)(2)](n) (3) L-1 is the imine resulting from the condensation of pyridine-2-carboxaldehyde with 2-(2-pyridyl)ethylamine] have been synthesized using lower molar equivalents of the Schiff base ligand with Cu(NO3)(2)center dot 3H(2)O and an excess of NaN3. Single crystal X-ray structures show that the basic unit of the complexes 1 and 2 contains Cu-4(II) building blocks; however, they have distinct basic and overall structures due to a small change in the bridging mode of the peripheral pair of copper atoms in the linear tetranudear structures. Interestingly, these changes are the result of changing the solvent system (MeOH/H2O to EtOH/H2O) used for the synthesis, without changing the proportions of the components (metal to ligand ratio 2:1). Using even lower proportions of the ligand, another unique complex was isolated with Cu-5(II) building units, forming a two-dimensional complex (3). Magnetic susceptibility measurements over a wide range of temperature exhibit the presence of both antiferromagnetic (very weak) and ferromagnetic exchanges within the tetranuclear unit structures. Density functional theory calculations (using B3LYP functional, and two different basis sets) have been performed on the complexes 1 and 2 to provide a qualitative theoretical interpretation of their overall magnetic behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Half-sandwich organometallic ruthenium complexes of seleno-nucleobases, 3 and 4, were synthesized and characterized. The structures of both complexes were determined by X-ray crystallography and are the first crystal structures of ruthenium complexes with seleno-nucleobases. Interestingly, 3 self-assembles aided by adventitious water in DMF to give a tetranuclear square 3a center dot 6H(2)O. Complex 4 is active against Jurkat and Molt-4 cell lines but inactive against the K562 cell line, whereas 3 is completely inactive against all three cell lines. The free ligand 6-selenopurine (1) and 6-selenoguanine (2) are highly active against these cell lines. Compound 2, like its thio analogue, is unstable under UVA light, whereas 4 is stable under similar conditions, which suggests that the ruthenium complex could reduce problems associated with the instability of the free ligand, 2, under irradiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copper(II) and copper(I) complexes of a newly designed and crystallographically characterized Schiff base (HL) derived from rhodamine hydrazide and cinnamaldehyde were isolated in pure form formulated as Cu(L)(NO3)] (L-Cu) (1) and Cu(HL)(CH3CN)(H2O)]ClO4 (HL-Cu) (2), and characterized by physicochemical and spectroscopic tools. Interestingly, complex 1 but not 2 offers red fluorescence in solution state, and eventually HL behaves as a Cu(II) ions selective FRET based fluorosensor in HEPES buffer (1 mM, acetonitrile-water: 1/5, v/v) at 25 degrees C at biological pH with almost no interference of other competitive ions. The dependency of the FRET process on the +2 oxidation state of copper has been nicely supported by exhaustive experimental studies comprising electronic, fluorimetric, NMR titration, and theoretical calculations. The sensing ability of HL has been evaluated by the LOD value towards Cu(II) ions (83.7 nM) and short responsive time (5-10 s). Even the discrimination of copper(I) and copper(II) has also been done using only UV-Vis spectroscopic study. The efficacy of this bio-friendly probe has been determined by employing HL to detect the intercellular distribution of Cu(II) ions in HeLa cells by developing image under fluorescence microscope.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Platinum(II) complexes Pt(pap)(an-cat)] (1) and Pt(pap)(py-cat)] (2) with 2-(phenylazo)pyridine (pap), 4-2-(anthracen-9-ylmethylene)amino]ethyl]benzene-1,2-diol (H(2)an-cat), and 4-2-(pyren-1-ylmethylene)amino]ethyl]benzene-1,2-diol (H2py-cat) were prepared, and their photoinduced cytotoxicity was studied. The complexes were found to release catecholate ligand in the presence of excess glutathione (GSH), resulting in cellular toxicity in the cancer cells. The catecholate complex Pt(pap)(cat)] (3) was prepared and used as a control. Complex 3, which is structurally characterized by X-ray crystallography, has platinum(II) in a distorted square-planar geometry. The complexes are redox-active, showing responses near 0.6 and 1.0 V versus SCE in N,N-dimethylformamide/0.1 M tetrabutylammonium perchlorate corresponding to a two-step catechol oxidation process and at -0.3 and -1.3 V for reduction of the pap ligand. Complex 1 showed remarkable light-induced cytotoxicity in HaCaT (human skin keratinocytes) and MCF-7 (human breast cancer) cells, giving IC50 value of similar to 5 mu M in visible light of 400-700 nm and >40 mu M in the dark. The 2',7'-dichlorofluorescein diacetate (DCFDA) assay showed the generation of reactive oxygen species (ROS), which seems to trigger apoptosis, as is evident from the annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) assay. The fluorescence microscopic images showed significant nuclear localization of the complexes and free ligands. A mechanistic study revealed possible reduction of the coordinated azo bond of pap by cellular GSH, releasing the catecholate ligand and resulting in remarkable photochemotherapeutic action of the complexes.