392 resultados para Group Ring
Resumo:
The thermal and explosive characteristics of ring-substituted arylammonium perchlorates have been studied by differential thermal analysis, explosion delay, and impact-sensitivity measurements. The decomposition and dissociation temperatures, as well as activiation energy for explosion, increase with increasing basicity of the corresponding arylamine. These parameters, when plotted against σ, the Hammett substituent constant, show a linear relationship in the case of meta- and para-substituted derivatives. The results indicate that a proton transfer from arylammonium ion to perchlorate ion is involved in the decompostion and also in the explosion process of these arylammonium perchlorates.
Resumo:
MNDO geometry optimizations were carried out on a series of symmetrically and unsymmetrically coupled strained ring hydrocarbons, R1-R1 and R1–R2 (R1=methyl, cyclopropyl, 1-bicyclo[1.1.0]butyl, 1-bicyclo[1.1.1]pentyl, prismyl, cubyl, 6-tricyclo [3.1.1.03,6]heptyl, and tetrahedryl groups; R2=methyl and cyclopropyl). The remarkable contraction of the C---C bond connecting the strained rings found experimentally in a few cases was reproduced correctly by the calculations. A linear correlation was found between the bond length shortening and the bond angle widening at the corresponding carbon atoms for all the structures considered. The reduction in C---C bond lengths due to various ring systems is additive. The additivity indicates that inter-ring interactions which effect the central bond length are absent and confirms the common electronic origin of bond contraction in these systems, viz. enhanced s-character in the exocyclic bonds of strained rings.
Resumo:
Reactions of group 6 metal carbonyls with bis(pyrazolyl) phosphazenes yield metal tricarbonyl complexes, [M(CO)3.L] [L = N3P3Ph4 (3, 5-Me2C3HN2)2 (1) or N3P3(MeNCH2CH2O)2 (3,5-Me2C3HN2)2(4)]. The structure of the complex [Mo(CO)3.1], determined by single-crystal X-ray analysis, shows that the (pyrazolyl) phosphazene acts as a tridentate ligand; the two pyridinic pyrazolyl nitrogen atoms and a phosphazene ring nitrogen atom are coordinated to the metal. A similar structure is proposed for the complexes [M(CO)3.4] (M = Mo or W] on the basis of their spectroscopic data.
Resumo:
The reactions of the complexes [MI2(CO)3-(NCMe)2] (M = Mo, W) with the diphosphazane ligands RN{P(OPh)2}2 (R = Me, Ph) in CH2Cl2 at room temperature afford new seven-coordinated complexes of the type [MI2(CO)3{P(OPh)2}2NR]. The molybdenum complexes are sensitive to air oxidation even in the solid state, whereas the tungsten complexes are more stable in the solid state and in solution. The structure of the tungsten complex [WI2(CO)3{P(OPh)2}2NPh] has been determined by single-crystal X-ray diffraction. It crystallizes in the orthorhombic system with the space group Pna 2(1), a = 19.372 (2) angstrom, b = 11.511 (1) angstrom, c = 15.581 (1) angstrom, and Z = 4. Full-matrix least-squares refinement with 3548 reflections (I > 2.5-sigma-(I)) led to final R and R(w) values of 0.036 and 0.034, respectively. The complex adopts a slightly distorted pentagonal-bypyramidal geometry rarely observed for such a type of complexes; two phosphorus atoms of the diphosphazane ligand, two iodine atoms, and a carbonyl group occupy the equatorial plane, and the other two carbonyl groups, the apical positions.
Resumo:
X-ray crystallographlc studies on 3′–5′ ollgomers have provided a great deal of information on the stereochemistry and conformational flexibility of nucleic acids and polynucleotides. In contrast, there is very little Information available on 2′–5′ polynucleotides. We have now obtained the crystal structure of Cytidylyl-2′,5′-Adenoslne (C2′p5′A) at atomic resolution to establish the conformational differences between these two classes of polymers. The dlnucleoside phosphate crystallises in the monocllnlc space group C2, with a = 33.912(4)Å, b =16.824(4)Å, c = 12.898(2)Å and 0 = 112.35(1) with two molecules in the asymmetric unit. Spectacularly, the two independent C2′p5′A molecules in the asymmetric unit form right handed miniature parallel stranded double helices with their respective crystallographic two fold (b axis) symmetry mates. Remarkably, the two mini duplexes are almost indistinguishable. The cytosines and adenines form self-pairs with three and two hydrogen bonds respectively. The conformation of the C and A residues about the glycosyl bond is anti same as in the 3′–5′ analog but contrasts the anti and syn geometry of C and A residues in A2′p5′C. The furanose ring conformation is C3′endo, C2′endo mixed puckering as in the C3′p5′A-proflavine complex. A comparison of the backbone torsion angles with other 2′–5′ dinucleoside structures reveals that the major deviations occur in the torsion angles about the C3′–C2′ and C4′-C3′ bonds. A right-handed 2′–5′ parallel stranded double helix having eight base pairs per turn and 45° turn angle between them has been constructed using this dinucleoside phosphate as repeat unit. A discussion on 2′–5′ parallel stranded double helix and its relevance to biological systems is presented.
Resumo:
Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) and the biological system's ability to detoxify these reactive intermediates. Mammalian cells have elaborate antioxidant defense mechanisms to control the damaging effects of ROS. Glutathione peroxidase (GPx), a selenoenzyme, plays a key role in protecting the organism from oxidative damage by catalyzing the reduction of harmful hydroperoxides with thiol a ``catalytic triad'' with tryptophan and glutamine, which cofactors. The selenocysteine residue at the active site forms activates the selenium moiety for an efficient reduction of peroxides. After the discovery that ebselen, a synthetic organoselenium compound, mimics the catalytic activity of GPx both in vitro and in vivo, several research groups developed a number of small-molecule selenium compounds as functional mimics of GPx, either by modifying the basic structure of ebselen or by incorporating some structural features of the native enzyme. The synthetic mimics reported in the literature can be classified in three major categories: (i) cyclic selenenyl amides having a Se-N bond, (ii) diaryl diselenides, and (iii) aromatic or aliphatic monoselenides. Recent studies show that ebselen exhibits very poor GPx activity when aryl or benzylic thiols such as PhSH or BnSH are used as cosubstrates. Because the catalytic activity of each GPx mimic largely depends on the thiol cosubstrates used, the difference in the thiols causes the discrepancies observed in different studies. In this Account, we demonstrate the effect of amide and amine substituents on the GPx activity of various organoselenium compounds. The existence of strong Se ... O/N interactions in the selenenyl sulfide intermediates significantly reduces the GPx activity. These interactions facilitate an attack of thiol at selenium rather than at sulfur, leading to thiol exchange reactions that hamper the formation of catalytically active selenol. Therefore, any substituent capable of enhancing the nucleophilic attack of thiol at sulfur in the selenenyl sulfide state would enhance the antioxidant potency of organoselenium compounds. Interestingly, replacement of the sec-amide substituent by a tert-amide group leads to a weakening of Se ... 0 interactions in the selenenyl sulfide intermediates. This modification results in 10- to 20-fold enhancements in the catalytic activities. Another strategy involving the replacement of tert-amide moieties by tert-amino substituents further increases the activity by 3- to 4-fold. The most effective modification so far in benzylamine-based GPx mimics appears to be either the replacement of a tert-amino substituent by a sec-amino group or the introduction of an additional 6-methoxy group in the phenyl ring. These strategies can contribute to a remarkable enhancement in the GPx activity. In addition to enhancing catalytic activity, a change in the substituents near the selenium moiety alters the catalytic mechanisms. The mechanistic investigations of functional mimics are useful not only for understanding the complex chemistry at the active site of GPx but also for designing and synthesizing novel antioxidants and anti-inflammatory agents.
Resumo:
The title compound, C t8H~sC15NaP4, crystallizes in the monoclinic space group P2~/n with a = 20.14 (2), b = 8.69 (1), c = 14.92 (2) A, fl = 98.8 (3) ° , Z = 4. The structure was determined from visual data and refined to R = 0-069 for 1450 reflections. The cyclophosphazene ring is non-planar. The exocyclic NPPh 3 group exhibits type I conformation [R. A. Shaw (1975). Pure Appl. Chem. 44, 317-341] in which the N-P bond is perpendicular to the adjacent P-CI bond.
Resumo:
ß-arylhydrazone-imine ligand complexes of nickel(II), namely, 4,10-dimethyl-5,9-diazatrideca-4,9-diene-2,12-dione-3,11-diphenylhydrazonato nickel(II), Ni(acacpn)(N2Ph-R)2 and 1,11-diphenyl-3,9-dimethyl-4,8-diazaun-deca-3,8-diene,1,11-dione-2,10-diphenyl hydrazonato nickel(II), Ni (beacpn) (N2Ph-R)2, [R = H, o-CH3p-CH3] have been prepared by metal template reactions and characterized. Both the azomethine nitrogens and α-nitrogens of bis-hydrazone form the coordination sites of the square-planar geometry around the nickel(II) ion. Loss of CO from the molecule and subsequently an interesting methyl group migration to the nucleus of the chelate ring have been observed in the mass spectrum. Structures are proposed based on the spectral and magnetic properties.
Resumo:
The hydrolysis reactions of organometallic ruthenium(II) piano-stool complexes of the type Ru-II(eta(6)-cymene)(L)Cl](0/+) (1-5, where L = kappa(1)- or kappa(2)-1,1-bis(diphenylphosphino)methane,1,1bis-(diphenylphosphino)methane oxide, kappa(1)-mercaptobenzothiazole) have been studied using density functional theory at the B3LYP level. In addition to considering a syn attack in an associative fashion, where the nucleophile approaches from the same side as the leaving group, we have explored alternative paths such as an anti attack in an associative manner, where the nucleophile attacks from the opposite side of the leaving group. During the anti attack, an intermediate is formed and there is a coordination mode change of the arene ring from eta(6) to eta(2) along with its rotation. When the intermediate goes to the product, the arene ring slips back from eta(2) to eta(6) coordination. This coordinated movement of the arene ring makes the associative anti attack an accessible pathway for the substitution process. Our calculations predict very similar activation barriers for both syn and anti attacks. In the dissociative path, the rate-determining step is the generation of a coordinatively unsaturated 16-electron ruthenium species. This turns out to be viable once solvent effects are included. The large size of the ancillary ligands on Ru makes the dissociative process as favorable as the associative process. Activation energy calculations reveal that although the dissociative path is favorable for kappa(1) complexes, both dissociative and associative processes can have significant contribution to the hydrolysis reaction in kappa(2) complexes. Once activated by hydrolysis, these complexes react with guanine and adenine bases of DNA. The thermodynamic stabilities of complexes formed with the nucleobases are also presented.
Resumo:
A series of isomeric cationic surfactants (S1-S5) bearing a long alkyl chain that carries a 1,4-phenylene unit and a trimethyl ammonium headgroup was synthesized; the location of the phenyl ring within the alkyl tail was varied in an effort to understand its influence on the amphiphilic properties of the surfactants. The cmc's of the surfactants were estimated using ionic conductivity measurements and isothermal calorimetric titrations (ITC); the values obtained by the two methods were found to be in excellent agreement. The ITC measurements provided additional insight into the various thermodynamic parameters associated with the micellization process. Although all five surfactants have exactly the same molecular formula, their micellar properties were seen to vary dramatically depending on the location of the phenyl ring; the cmc was seen to decrease by almost an order of magnitude when the phenyl ring was moved from the tail end (cmc of S1 is 23 mM) to the headgroup region (cmc of S5 is 3 mM). In all cases, the enthalpy of micellization was negative but the entropy of micellization was positive, suggesting that in all of these systems the formation of micelles is both enthalpically and entropically favored. As expected, the decrease in cmc values upon moving the phenyl ring from the tail end to he headgroup region is accompanied by an increase in the thermodynamic driving force (Delta G) for micellization. To understand further the differences in the micellar structure of these surfactants, small-angle neutron scattering (SANS) measurements were carried out; these measurements reveal that the aggregation number of the micelles increases as the cmc decreases. This increase in the aggregation number is also accompanied by an increase in the asphericity of the micellar aggregate and a decrease in the fractional charge. Geometric packing arguments are presented to account for these changes in aggregation behavior as a function of phenyl ring location.