318 resultados para 17-BETA-ESTRADIOL
Resumo:
The free-base, copper(II) and zinc(II) derivatives of 5,10,15,20-tetraarylporphyrin (aryl = phenyl, 4-methylphenyl or 4-chlorophenyl) and the corresponding brominated 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetraarylporphyrin derivatives have been synthesized and their spectral and redox properties compared by UV/VIS, H-1 NMR, ESR and cyclic voltammetric methods. Substitution with the electron-withdrawing bromine groups at the pyrrole carbons has a profound influence on the UV/VIS and H-1 NMR spectral features and also on the redox potentials of these systems. On the other hand, electron-withdrawing chloro or electron-donating methyl groups at the para positions of the four phenyl rings have only a marginal effect on the spectra and redox potentials of both the brominated and the non-brominated derivatives. The ESR data for the copper(II) derivatives of ail these systems reveal that substitution at either the beta-pyrrole carbons and/or the para positions of the meso-phenyl groups does not significantly affect the spin-Hamiltonian parameters that describe the metal centre in each case. Collectively, these observations suggest that the highest-occupied (HOMO) and lowest-unoccupied molecular orbitals (LUMO) of the octabromoporphyrins involve the porphyrin pi-ring system as is the case with the non-brominated derivatives.-Investigations have been carried out to probe the electronic structures of these systems by three different approaches involving spectral and redox potential data as well as AMI calculations. The results obtained suggest that the electron-withdrawing beta-bromine substituents stabilize the LUMOs and, to a lesser degree, the HOMOs and that the extent of these changes can be fine-tuned, in a subtle way, by substituting at the meso-aryl rings of a given porphyrin.
Resumo:
The three crystal structures reported here provide details of the interactions of mannose and the mannosyl-alpha-1,3-mannose component of a pentamannose with banana lectin and evidence for the binding of glucosyl-alpha-1,2-glucose to the lectin. The known structures involving the lectin include a complex with glucosyl-beta-1,3-glucose. Modeling studies on the three disaccharide complexes with the reducing end and the nonreducing end at the primary binding site are also provided here. The results of the Xray and modeling studies show that the disaccharides with an alpha-1,3 linkage prefer to have the nonreducing end at the primary binding site, whereas the reducing end is preferred at the site when the linkage is beta-1,3 in mannose/glucose-specific beta-prism I fold lectins. In the corresponding galactose-specific lectins, however, alpha-1,3-linked disaccharides cannot bind the lectin with the nonreducing end at the primary binding site on account of steric clashes with an aromatic residue that occurs only when the lectin is galactose-specific. Molecular dynamics simulations based on the known structures involving banana lectin enrich the information on lectin-carbohydrate interactions obtained from crystal structures. They demonstrate that conformational selection as well as induced fit operate when carbohydrates bind to banana lectin.
Resumo:
beta-Cyclodextrin borate catalyses oxygenation of aryl substituted alkenes in the presence of t-BuOOH to afford beta-dioxy alcohols in good yields (63-86%). Copyright (C) 1996 Published by Elsevier Science Ltd
Resumo:
Sintering of titanium in its high temperature beta phase was studied by isothermal dilatometry. The sintering shrinkage y did not follow the normal time exponent type of behaviour, instead being described by the equation y = Kt(m)/[1-(A+Bt)(2)], where m = 1.93 +/- 0.07, with an activation energy of 62-90 kJ mol(-1). A detailed analysis of these results, based on the 'anomalous' diffusion behaviour reported for beta titanium, is carried out. It is shown that the generation of a high density of dislocations during the alpha --> beta phase transformation, coupled with sluggish recovery at the sintering necks, enables sintering mass transport by pipe diffusion through dislocation cores from sources of matter within the particles to become dominant.
Resumo:
Crystal structures of six binary salts involving aromatic amines as cations and hydrogen tartrates as anions are presented. The materials are 2,6-xylidinium-L-monohydrogen tartrate monohydrate, C12H18O6.5N, P22(1)2(1), a = 7.283(2) Angstrom, b = 17.030(2) Angstrom, c = 22.196(2) Angstrom, Z = 8; 2,6-xylidinium-D-dibenzoyl monohydrogen tartrate, C26H25O8N, P2(1), a = 7.906(1) Angstrom, b = 24.757(1) Angstrom, c = 13.166(1) Angstrom, beta = 105.01(1)degrees, Z = 4; 2,3-xylidinium-D-dibenzoyl monohydrogen tartrate monohydrate, C26H26O8.5N, P2(1), a = 7.837(1) Angstrom, b = 24.488(1) Angstrom, c = 13.763(1) Angstrom, beta = 105.69(1)degrees, Z = 4; 2-toluidinium-D-dibenzoyl monohydrogen tartrate, C25H23O8N, P2(1)2(1)2(1), a = 13.553(2) Angstrom, b = 15.869(3) Angstrom, c = 22.123(2) Angstrom, Z = 8; 3-toluidinium-D-dibenzoyl monohydrogen tartrate (1:1), C25H23O8N, P1, a = 7.916(3) Angstrom, b = 11.467(6) Angstrom, c = 14.203(8) Angstrom, alpha = 96.44(4)degrees, beta = 98.20(5)degrees, = 110.55(5)degrees, Z = 2; 3-toluidinium-D-dibenzoyl tartrate dihydrate (1:2), C32H36O10N, P1, a = 7.828(3) Angstrom, b = 8.233(1) Angstrom, c = 24.888(8) Angstrom, alpha = 93.98 degrees, beta = 94.58(3)degrees, = 89.99(2)degrees, Z = 2. An analysis of the hydrogen-bonding schemes in terms of crystal packing, stoichiometric variations, and substitutional variations in these materials provides insights to design hydrogen-bonded networks directed toward the engineering of crystalline nonlinear optical materials.
Resumo:
C13H12F3NO2, M(r) = 271.2, triclinic, P1BAR, a = 5.029 (2), b = 7.479 (2), c = 17.073 (5) angstrom, alpha = 97.98 (2), beta = 95.54 (3), gamma = 103.62 (3)-degrees, V = 612.4 (4) angstrom 3, Z = 2, D(m) = 1.463, D(x) = 1.471 g cm-3, lambda(Mo K-alpha) = 0.71069 angstrom, mu = 1.23 cm-1, F(000) = 280, T = 298 K, final R value is 0.041 for 2047 observed reflections with \F(omicron)\ greater-than-or-equal-to 6-sigma(\F(omicron)\). The N-C(sp2) bond length is 1.356 (2) angstrom. The N and C atoms of the ethylamino group deviate by < 0.15 angstrom from the plane of the aromatic ring. Short intramolecular contacts, C(3)...F(17) 2.668 (3) angstrom [H(3)...F(17) 2.39 (2) angstrom, C(3)-H(C3)...F(17) 98 (1)-degrees], C(5)...F(18) 3.074 (3) and C(5)...F(19) 3.077 (3) angstrom exist in the structure. The crystal structure is stabilized by intermolecular N-H...O hydrogen bonds with N(12)-H(N12) 0.79 (3), H(N12)...O(11)' 2.36 (3), N(12)...O(11)' (x - 1, y + 1, z) 3.105 (3) angstrom and N(12)-H(N12)...O(11)' 155 (2)-degrees.
Resumo:
C19H26O4, M(r) = 318.41, orthorhombic, P2(1)2(1)2(1), a = 10.591 (1), b = 11.133 (1), c = 13.657 (2) angstrom, V = 1610.29 angstrom 3, Z = 4, D(m) (flotation in KI) = 1.301, D(x) = 1.313 g cm-3, Mo K-alpha, lambda = 0.7107 angstrom, mu = 0.85 cm-1, F(000) = 688, T = 293 K, R = 0.057 for 1253 significant reflections. The A ring is disordered with atoms C(2) and O(19) occupying two possible sites. The molecules are held together by a hydrogen bond [O(9)...O(17) = 2.89 angstrom].
Resumo:
The hydrolysis of beta-lactam antibiotics by beta-lactamases is one of the major bacterial defense systems. These enzymes generally hydrolyze a variety of antibiotics including the latest generation of cephalosporins, cephamycins and imipenem. In this paper, the effect of cephalosporins-based antibiotics on the peroxynitrite-mediated nitration of protein tyrosine is described. Although some of the antibiotics have weak inhibitory effect on the nitration reactions in the absence of beta-lactamase, they exhibit very strong inhibition in the presence of beta-lactamase. This is due to the elimination of heterocyclic thiol/thione moieties from cephalosporins by beta-lactamase-mediated hydrolysis. After the elimination, the thiols/thiones effectively scavenge peroxynitrite, leading to the inhibition of the nitration reactions.
Resumo:
Herein we present a simple and highly efficient method for the synthesis of beta and gamma-amino thiols via regioselective ring opening of sulfamidates with tetrathiomolybdate 1. The generality of this methodology has been shown by synthesizing carbohydrate derived beta-amino thiol. The scope and versatility of this methodology has been demonstrated by synthesizing biologically important unnatural amino acids like isocysteines in optically pure form. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The use of fac-[Mo(CO)(3)(MeCN)(eta(2)-L(1))] (1a) {L(1) = Ph(2)PN(Pr-i)PPh(DMP)}(2) as a precursor to metalloligands and bimetallic, heterotrimetallic, and heptacoordinated complexes is reported. The reaction of 1a with diphosphazane, dppa, or a diphosphinoalkane such as dppm or dppe yields the fac-eta(1)-diphosphine substituted metalloligands, fac-[Mo(CO)(3)(eta(2)-L(1))(eta(1)-PXP)] {PXP = dppa (2), dppm (3), and dppe (4)}. These undergo isomerization to yield the corresponding mer-diphosphine complexes (5-7). Oxidation of the uncoordinated phosphorus atom of the mer-eta(1)-dppm-substituted complex eventually provides mer-[Mo(CO)(3)-(eta(2)-L(1)){eta(1)-Ph(2)PCH(2)P(O)Ph(2)}](8). The structure of the latter complex has been confirmed by single crystal X-ray diffraction {triclinic system, P ($) over bar 1; a = 11.994(3), b = 14.807(2), c = 15.855(3) Angstrom; alpha = 114.24(1), beta = 91.35(2), and gamma = 98.95(1)degrees; Z = 2, 4014 data (F-0 > 5 sigma(F-0)), R = 0.066, R(W) = 0.069}. Treatment of the dppe metalloligand 7 with [PtCl2(COD)] yields the heterotrimetallic complex cis-[PtCl2{mer-[Mo(CO)(3)(eta(2)-L(1))(eta(1)-dppe]}(2)] (9). Attempts to prepare a related trimetallic complex with the dppm-containing metalloligand were unsuccessful; only the tetracarbonyl complex cis-[Mo(CO)(4)(eta(2)-L(1))] (1b) and cis-[PtCl2(eta(2)-dppm)] were obtained. Reaction of la with dppe in the ratio 2:1 yields the mer-mer dinuclear complex [{mer-[Mo(CO)(3)(eta(2)-L(1))]}(2)(mu-dppe)] (10) bridged by dppe. Oxidation of 1a with iodine yields the Mo(II) heptacoordinated complex [MoI2(CO)(2)(eta(3)-L(1))] (11) with tridentate PPN coordination. The same Mo(II) complex 11 is also obtained by the direct oxidation of the tetracarbonyl complex cis-[Mo(CO)(4)(eta(2)-L(1))] (1b) with iodine. The structure of 11 has been confirmed by X-ray diffraction studies {monoclinic system, Cc; a = 10.471(2), b = 19.305(3), c = 17.325(3) Angstrom; beta = 95.47(2)degrees; Z = 4, 3153 data (F-0 > 5 sigma(F-0)), R = 0.049, R(W) = 0.051}. This complex exhibits an unusual capped-trigonal prismatic geometry around the metal. A similar heptacoordinated complex 12 with a chiral diphosphazane ligand {L(3) = (S,R)-P(h)2PN-(*CHMePh)*PPh(DMP)} has also been synthesized.
Resumo:
The first stereoselective total synthesis of the novel sesquiterpenes 1 and 2 is described. The preparation of the key intermediate 27 involved a rearrangement of a bicyclo[3.2.1] octane framework to an isomeric bicyclo[3.2.1]octane skeleton via a bicyclo[2.2.2]octane derivative.
Resumo:
alpha,beta-Dehydrophenylalanine residues constrain the peptide backbone to beta-bend conformation. A pentapeptide containing four consecutive (Delta Phe) residues has been synthesised and crystallised. The peptide Boc-LAla-Delta Phe-Delta Phe-Delta Phe-Delta Phe-NHMe (C45H46N6O7, MW = 782.86) was crystallised from an acetonitrile/methanol mixture. The crystal belongs to the orthorhombic space group P2(1)2(1)2(1) With a = 19.455(6), b = 20.912(9), c = 11.455(4) Angstrom and Z = 4. The X-ray (MoKalpha, lambda = 0.7107 Angstrom) intensity data were collected using the Rigaku-AFC7 diffractrometer. The crystal structure was determined by direct methods and refined using the least-squares technique, R = 8.41% for 1827 reflections with \F-o\ > 4 sigma\F-o\. The molecule contains the largest stretch of consecutive dehydrophenylalanine residues whose crystal structure has been determined so far. The peptide adopts left-handed 3(10)-helical conformation despite the presence of LAla at the N-terminus. The mean phi, psi values, averaged across the last four residues are 56.8 degrees and 17.5 degrees, respectively. There are four 4-->1 intramolecular hydrogen bonds, characteristic of the 3(10)-helix. In the crystal each molecule interacts with four crystallographically symmetric molecules with one hydrogen bond each.
Resumo:
A simple method for the preparation of monophasic beta-SiAlON using nitridation of Si and AIN with an oxygen partial pressure of 10(-4) atm is described. The effect of the AlN/Si ratio in the initial mixture on the formation of beta-SiAlON is discussed. The likely mechanism of the formation of beta-SiAlON is outlined.