325 resultados para laser processing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hot deformation behavior of hot isostatically pressed (HIP) NIMONIC AP-1 superalloy is characterized using processing maps in the temperature range 950-degrees-C to 1200-degrees-C and strain rate range 0.001 to 100 s-1. The dynamic materials model has been used for developing the processing maps which show the variation of the efficiency of power dissipation given by [2m/(m +1)] with temperature and strain rate, with m being the strain rate sensitivity of flow stress. The processing map revealed a domain of dynamic recrystallization with a peak efficiency of 40 pct at 1125-degrees-C and 0.3 s-1, and these are the optimum parameters for hot working. The microstructure developed under these conditions is free from prior particle boundary (PPB) defects, cracks, or localized shear bands. At 100 s-1 and 1200-degrees-C, the material exhibits inter-crystalline cracking, while at 0.001 s-1, the material shows wedge cracks at 1200-degrees-C and PPB cracking at 1000-degrees-C. Also at strain rates higher than 10 s-1, adiabatic shear bands occur; the limiting conditions for this flow instability are accurately predicted by a continuum criterion based on the principles of irreversible thermodynamics of large plastic flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The constitutive flow behavior of a metal matrix composite (MMC) with 2124 aluminum containing 20 vol pct silicon carbide particulates under hot-working conditions in the temperature range of 300 °C to 550 °C and strain-rate range of 0.001 to 1 s-1 has been studied using hot compression testing. Processing maps depicting the variation of the efficiency of power dissipation given by [2m/(m + 1)] (wherem is the strain-rate sensitivity of flow stress) with temperature and strain rate have been established for the MMC as well as for the matrix material. The maps have been interpreted on the basis of the Dynamic Materials Model (DMM). [3] The MMC exhibited a domain of superplasticity in the temperature range of 450 °C to 550 °C and at strain rates less than 0.1 s-1. At 500 °C and 1 s-1 strain rate, the MMC undergoes dynamic recrystallization (DRX), resulting in a reconstitution of microstructure. In comparison with the map for the matrix material, the DRX domain occurred at a strain rate higher by three orders of magnitude. At temperatures lower than 400 °C, the MMC exhibited dynamic recovery, while at 550 °C and 1 s-1, cracking occurred at the prior particle boundaries (representing surfaces of the initial powder particles). The optimum temperature and strain-rate combination for billet conditioning of the MMC is 500 °C and 1 s-1, while secondary metalworking may be done in the super- plasticity domain. The MMC undergoes microstructural instability at temperatures lower than 400 °C and strain rates higher than 0.1 s-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aerodynamics of the blast wave produced by laser ablation is studied using the piston analogy. The unsteady one-dimensional gasdynamic equations governing the flow an solved under assumption of self-similarity. The solutions are utilized to obtain analytical expressions for the velocity, density, pressure and temperature distributions. The results predict. all the experimentally observed features of the laser produced blast waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hot workability of an Al-Mg-Si alloy has been studied by conducting constant strain-rate compression tests. The temperature range and strain-rate regime selected for the present study were 300-550 degrees C and 0.001-1 s(-1), respectively. On the basis of true stress data, the strain-rate sensitivity values were calculated and used for establishing processing maps following the dynamic materials model. These maps delineate characteristic domains of different dissipative mechanisms. Two domains of dynamic recrystallization (DRX) have been identified which are associated with the peak efficiency of power dissipation (34%) and complete reconstitution of as-cast microstructure. As a result, optimum hot ductility is achieved in the DRX domains. The strain rates at which DRX domains occur are determined by the second-phase particles such as Mg2Si precipitates and intermetallic compounds. The alloy also exhibits microstructural instability in the form of localized plastic deformation in the temperature range 300-350 degrees C and at strain rate 1 s(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface melting by a stationary, pulsed laser has been modelled by the finite element method. The role of the surface tension driven convection is investigated in detail. Numerical results are presented for a triangular laser pulse of durations 10, 50 and 200 ms. Though the magnitude of the velocity is high due to the surface tension forces, the present results indicate that a finite time is required for convection to affect the temperature distribution within the melt pool. The effect of convection is very significant for pulse durations longer than 10 ms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attempt is made to present some challenging problems (mainly to the technically minded researchers) in the development of computational models for certain (visual) processes which are executed with, apparently, deceptive ease by the human visual system. However, in the interest of simplicity (and with a nonmathematical audience in mind), the presentation is almost completely devoid of mathematical formalism. Some of the findings in biological vision are presented in order to provoke some approaches to their computational models, The development of ideas is not complete, and the vast literature on biological and computational vision cannot be reviewed here. A related but rather specific aspect of computational vision (namely, detection of edges) has been discussed by Zucker, who brings out some of the difficulties experienced in the classical approaches.Space limitations here preclude any detailed analysis of even the elementary aspects of information processing in biological vision, However, the main purpose of the present paper is to highlight some of the fascinating problems in the frontier area of modelling mathematically the human vision system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a dramatic change in effective three-photon absorption coefficient of amorphous Ge16As29Se55 thin films, when its optical band gap decreases by 10 meV with 532 nm light illumination. This large change provides valuable information on the higher excited states, which are otherwise inaccessible via normal optical absorption. The results also indicate that photodarkening in chalcogenide glasses can serve as an effective tool to tune the multiphoton absorption in a rather simple way. (C) 2011 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomedical engineering solutions like surgical simulators need High Performance Computing (HPC) to achieve real-time performance. Graphics Processing Units (GPUs) offer HPC capabilities at low cost and low power consumption. In this work, it is demonstrated that a liver which is discretized by about 2500 finite element nodes, can be graphically simulated in realtime, by making use of a GPU. Present work takes into consideration the time needed for the data transfer from CPU to GPU and back from GPU to CPU. Although behaviour of liver is very complicated, present computer simulation assumes linear elastostatics. One needs to use the commercial software ANSYS to obtain the global stiffness matrix of the liver. Results show that GPUs are useful for the real-time graphical simulation of liver, which in turn is needed in simulators that are used for training surgeons in laparoscopic surgery. Although the computer simulation should involve rendering also, neither rendering, nor the time needed for rendering and displaying the liver on a screen, is considered in the present work. The present work is just a demonstration of a concept; the concept is not really implemented and validated. Future work is to develop software which can accomplish real-time and very realistic graphical simulation of liver, with rendered image of liver on the screen changing in real-time according to the position of the surgical tool tip approximated as the mouse cursor in 3D.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a dynamic materials model, processing and instability maps have been developed for near-alpha titanium alloy 685 in the temperature range 775-1025 degrees C and strain-rate range of 0.001-10 s(-1) to optimise its hot workability. The alloy's beta-transus temperature lies at about 1020 degrees C. The material undergoes superplasticity with a peak efficiency of 80% at 975 degrees C and 0.001 s(-1), which are the optimum parameters for alpha-beta working. The occurrence of superplasticity is attributed to two-phase microduplex structure, higher strain-rate sensitivity, low flow stress and sigmoidal variation between log flow stress and log strain rate. The material also exhibits how localisation due to adiabatic shear-band formation up to its beta-transus temperature with strain rates greater than 0.02 s(-1) and thus cracking along these regions. (C) 1997 Published by Elsevier Science S.A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead Zirconate (PbZrO3) thin films were deposited by pulsed laser ablation method. Pseudocubic (110) oriented in-situ films were grown at low pressure. The field enforced anti-ferroelectric (AFE) to ferroelectric (FE) phase transformation behaviour was investigated by means of a modified Sawyer Tower circuit as well as capacitance versus applied voltage measurements. The maximum polarisation obtained was 36 mu C cm(-2) and the critical field to induce ferroelectric state and to reverse the antiferroelectric slates were 65 and 90 kV cm(-1) respectively. The dielectric properties were investigated as a function of frequency and temperature. The dielectric constant of the AFE lead zirconate thin him was 190 at 100 kHz which is more than the bulk ceramic value (120) with a dissipation factor of less than 0.07. The polarisation switching kinetics of the antiferroelectric PbZrO3 thin films showed that the switching time to be around 275 ns between antipolar state to polar states. (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The laser ablated barium strontium titanate (BST) thin films were characterized in terms of composition, structure, microstructure and electrical properties. Films deposited at 300 degrees C under 50 mTorr oxygen pressure and 3 J cm(-2) laser fluence and further annealed at 600 degrees C in flowing oxygen showed a dielectric constant of 467 and a dissipation factor of 0.02. The room-temperature current-voltage characteristics revealed a space charge limited conduction (SCLC) mechanism, though at low fields the effect of the electrodes was predominant. The conduction mechanism was thoroughly-investigated in terms of Schottky emission at low fields, and bulk-limited SCLC at high fields. The change over to the bulk-limited conduction process from the electrode-limited Schottky emission was, attributed to the process of tunneling through the electrode interface at high fields resulting into the lowering of the electrode contact resistance and consequently giving rise to a bulk limited conduction process. The predominance of SCLC mechanism in the films suggests that the bulk properties are only revealed if the depletion width at the electrode interface is thin enough to allow the tunneling process to take place. This condition is only favorable if the him thickness is high or if the doping concentration is high enough. In the present case the film thickness ranged from 0.3 to 0.7 mu m which was suitable to show the transition mentioned above. (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Closed form solutions for a simultaneously AM and high-harmonic FM mode locked laser system is presented. Analytical expressions for the pulsewidth and pulsewidth-bandwidth products are derived in terms of the system parameters. The analysis predicts production of 17 ps duration pulses in a Nd:YAG laser mode locked with AM and FM modulators driven at 80 MHz and 1.76 GHz for 1 W modulator input power. The predicted values of the pulsewidth-bandwidth product lie between the values corresponding to the pure AM and FM mode locking values.