195 resultados para direct vapor equilibriation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the growth of carbon nanoflakes (CNFs) on Si substrate by the hot filament chemical vapor deposition without the substrate bias or the catalyst. CNFs were grown using the single wall carbon nanotubes and the multiwall carbon nanotubes as the nucleation center, in the Ar-rich CH4-H-2-Ar precursor gas mixture with 1% CH4, at the chamber pressure and the substrate temperature of 7.5 Ton and 840 degrees C, respectively. In the H-2-rich condition, CNF synthesis failed due to severe etch-removal of carbon nanotubes (CNTs) while it was successful at the optimized Ar-rich condition. Other forms of carbon such as nano-diamond or mesoporous carbon failed to serve as the nucleation centers for the CNF growth. We proposed a mechanism of the CNF synthesis from the CNTs, which involved the initial unzipping of CNTs by atomic hydrogen and subsequent nucleation and growth of CNFs from the unzipped portion of the graphene layers. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the electrical transport behavior of carbon nanotubes (CNTs) upon exposure to organic analytes (namely ethanol, benzene, acetone and toluene). The resulting nonlinear current-voltage characteristics revealed a power law dependence of the differential conductivity on the applied bias voltage. Moreover, suppression of differential conductivity at zero bias is found to be dependent on different selective analytes. The power law exponent values have been monitored before, during and after exposure to the chemicals, which revealed a reversible change in the number of electron conducting channels. Therefore, the reduction in the number of conductive paths can be attributed to the interaction of the chemical analyte on the CNT surfaces, which causes a decrease in the differential conductivity of the CNT sample. These results demonstrate chemical selectivity of CNTs due to varying electronic interaction with different chemical analytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report high aspect-ratio micromechanical structures made of SU-8 polymer, which is a negative photoresist. Mask-less direct writing with 405 nm laser is used to pattern spin-cast SU-8 films of thickness of more than 600 um. As compared with X-ray lithography, which helps pattern material to give aspect ratios of 1:50 or higher, laser writing is a less expensive and more accessible alternative. In this work, aspect ratios up to 1:30 were obtained on narrow pillars and cantilever structures. Deep vertical patterning was achieved in multiple exposures of the surface with varying dosages given at periodic intervals of sufficient duration. It was found that a time lag between successive exposures at the same location helps the material recover from the transient changes that occur during exposure to the laser. This gives vertical sidewalls to the resulting structures. The time-lags and dosages were determined by conducting several trials. The micromechanical structures obtained with laser writing are compared with those obtained with traditional UV lithography as well as e-beam lithography. Laser writing gives not only high aspect ratios but also narrow gaps whereas e-beam can only give narrow gaps over very small depths. Unlike traditional UV lithography, laser writing does not need a mask. Furthermore, there is no adjustment for varying the dosage in traditional UV lithography. A drawback of this method compared to UV lithography is that the writing time increases. Some test structures as well as a compliant microgripper are fabricated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that a liquid organic precursor can be injected directly into molten magnesium to produce nanoscale ceramic dispersions within the melt. The castings made in this way possess good resistance to tensile deformation at 673 K (400 degrees C), confirming the non-coarsening nature of these dispersions. Direct liquid injection into molten metals is a significant step toward inserting different chemistries of liquid precursors to generate a variety of polymer-derived metal matrix composites. (C) The Minerals, Metals & Materials Society and ASM International 2013

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ge2Sb2Te5 (GST) is well known for its phase change properties and applications in memory and data storage. Efforts are being made to improve its thermal stability and transition between amorphous and crystalline phases. Various elements are doped to GST to improve these properties. In this work, Se has been doped to GST to study its effect on phase change properties. Amorphous GST film crystallized in to rock salt (NaCl) type structure at 150 degrees C and then transformed to hexagonal structure at 250 degrees C. Interestingly, Se doped GST ((GST)(0.9)Se-0.1) film crystallized directly into hexagonal phase and the intermediate phase of NaCl is not observed. The crystallization temperature (T-c) of (GST)(0.9)Se-0.1 is around 200 degrees C, which is 50 degrees C higher than the T-c of GST. For (GST)(0.9)Se-0.1, the threshold switching occurs at about 4.5V which is higher than GST (3 V). Band gap (E-opt) values of as deposited films are calculated from Tauc plot which are 0.63 eV for GST and 0.66 eV for (GST)(0.9)Se-0.1. The E-opt decreases for the films annealed at higher temperatures. The increased T-c, E-opt, the contrast in resistance and the direct transition to hexagonal phase may improve the data readability and thermal stability in the Se doped GST film. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that the universal conductance fluctuations (UCF) can be used as a direct probe to study the valley quantum states in disordered graphene. The UCF magnitude in graphene is suppressed by a factor of four at high carrier densities where the short-range disorder essentially breaks the valley degeneracy of the K and K' valleys, leading to a density dependent crossover of symmetry class from symplectic near the Dirac point to orthogonal at high densities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spark plasma sintering (SPS) is a convenient and rapid means of producing dense ceramic compacts. However, the mechanisms responsible for rapid densification have not been identified satisfactorily, with different studies using an indirect approach yielding varied values for the densification parameters. This study involved SPS in high purity nanocrystalline alumina with temperatures ranging from 1173 to 1423K and stresses from 25 to 100MPa. A direct approach, with analyses at a constant density, revealed a stress exponent of similar to 1 and an inverse grain size dependence of similar to 3, consistent with Coble creep process. Whereas the direct approach gives a stress exponent of similar to 1, the indirect approach used previously gives stress exponents ranging from similar to 2.2 to 3.5 with the same data, thereby revealing potentially spurious values of the densification parameters from conventional indirect approaches to characterizing densification. The rapid densification during SPS is related to the finer grain sizes retained with the rapid heating rates and the imposed stress that enhances the driving force for densification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of heating by black carbon aerosols on Indian summer monsoon has remained inconclusive. Some investigators have predicted that black carbon aerosols reduce monsoon rainfall while others have argued that it will increase monsoon rainfall. These conclusions have been based on local influence of aerosols on the radiative fluxes. The impact of aerosol-like heating in one region on the rainfall in a remote region has not been examined in detail. Here, using an atmospheric general circulation model, it has been shown that remote influence of aerosol-like heating can be as important as local influence on Indian summer monsoon. Precipitation in northern Arabian Sea and north-west Indian region increased by 16% in June to July when aerosol-like heating were present globally. The corresponding increase in precipitation due to presence of aerosol-like heating only over South Asia (local impact) and East Asia (remote impact) were 28 and 13%, respectively. This enhancement in precipitation was due to destabilization of the atmosphere in pre-monsoon season that affected subsequent convection. Moreover, pre-monsoon heating of the lower troposphere changed the circulation substantially that enabled influx of more moisture over certain regions and reduced the moist static stability of the atmosphere. It has been shown that regional aerosol heating can have large impact on the phase of upper tropospheric Rossby wave in pre-monsoon season, which acts as a primary mechanism behind teleconnection and leads to the change in precipitation during monsoon season. These results demonstrate that changes in aerosol in one region can influence the precipitation in a remote region through changes in circulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precise control of supercoiling homeostasis is critical to DNA-dependent processes such as gene expression, replication, and damage response. Topoisomerases are central regulators of DNA supercoiling commonly thought to act independently in the recognition and modulation of chromosome superstructure; however, recent evidence has indicated that cells tightly regulate topoisomerase activity to support chromosome dynamics, transcriptional response, and replicative events. How topoisomerase control is executed and linked to the internal status of a cell is poorly understood. To investigate these connections, we determined the structure of Escherichia coil gyrase, a type HA topoisomerase bound to YacG, a recently identified chromosomally encoded inhibitor protein. Phylogenetic analyses indicate that YacG is frequently associated with coenzyme A (CoA) production enzymes, linking the protein to metabolism and stress. The structure, along with supporting solution studies, shows that YacG represses gyrase by sterically occluding the principal DNA-binding site of the enzyme. Unexpectedly, YacG acts by both engaging two spatially segregated regions associated with small-molecule inhibitor interactions (fluoroquinolone antibiotics and the newly reported antagonist GSK299423) and remodeling the gyrase holo enzyme into an inactive, ATP-trapped configuration. This study establishes a new mechanism for the protein-based control of topoisomerases, an approach that may be used to alter supercoiling levels for responding to changes in cellular state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of barrier materials for organic device encapsulation is of key interest for the commercialization of organic electronics. In this work, we have fabricated barrier films with ultralow water vapor permeabilities by reactive layer-by-layer approach. Using this technique, alternative layers of polyethylene imine and stearic acid were covalently bonded on a Surlyn film. The roughness, transparency and thickness of the films were determined by atomic force microscopy, UV-visible spectroscopy and scanning electron microscopy, respectively. Water vapor transmission rates through these films and the ability of these films to protect the organic photovoltaic devices was investigated. The films with covalently assembled bilayers exhibited lower water vapor transmission rates and maintained higher organic photovoltaic device efficiencies compared to the neat Surlyn film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The topological homeostasis of bacterial chromosomes is maintained by the balance between compaction and the topological organization of genomes. Two classes of proteins play major roles in chromosome organization: the nucleoid-associated proteins (NAPs) and topoisomerases. The NAPs bind DNA to compact the chromosome, whereas topoisomerases catalytically remove or introduce supercoils into the genome. We demonstrate that HU, a major NAP of Mycobacterium tuberculosis specifically stimulates the DNA relaxation ability of mycobacterial topoisomerase I (TopoI) at lower concentrations but interferes at higher concentrations. A direct physical interaction between M. tuberculosis HU (MtHU) and TopoI is necessary for enhancing enzyme activity both in vitro and in vivo. The interaction is between the amino terminal domain of MtHU and the carboxyl terminal domain of TopoI. Binding of MtHU did not affect the two catalytic trans-esterification steps but enhanced the DNA strand passage, requisite for the completion of DNA relaxation, a new mechanism for the regulation of topoisomerase activity. An interaction-deficient mutant of MtHU was compromised in enhancing the strand passage activity. The species-specific physical and functional cooperation between MtHU and TopoI may be the key to achieve the DNA relaxation levels needed to maintain the optimal superhelical density of mycobacterial genomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A layer-by-layer approach was used for the fabrication of multilayer films for ultra high gas barrier applications. The ultra high gas barrier material was designed by incorporating Nafion layer in between bilayers of poly(ethylene imine) and poly(acrylic acid) on a Surlyn substrate. When the barrier film with self-assembled Nafion is exposed to the moist environment, Nafion absorbs and desorbs water molecules simultaneously, thereby reducing the ingress of moisture in to the film. In order to study the effect of Nafion, the fabricated barrier materials with and without the presence of Nafion were tested for water vapor barrier properties. The barrier films were further used for encapsulating organic photovoltaic devices and were evaluated for their potential use in barrier applications. The devices encapsulated with the films containing Nafion exhibited better performance when subjected to accelerated aging conditions. Therefore, this study demonstrates the effectiveness of self-assembled Nafion in reducing the water vapor permeability by nearly five orders of magnitude and in increasing the lifetimes of organic devices by similar to 22 times under accelerated weathering conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a direct correlation between dissimilar ion pair formation and alkali ion transport in soda-lime silicate glasses established via broad band conductivity spectroscopy and local structural probe techniques. The combined Raman and Nuclear Magnetic Resonance (NMR) spectroscopy techniques on these glasses reveal the coexistence of different anionic species and the prevalence of Na+-Ca2+ dissimilar pairs as well as their distributions. The spectroscopic results further confirm the formation of dissimilar pairs atomistically, where it increases with increasing alkaline-earth oxide content These results, are the manifestation of local structural changes in the silicate network with composition which give rise to different environments into which the alkali ions hop. The Na+ ion mobility varies inversely with dissimilar pair formation, i.e. it decreases with increase of non-random formation of dissimilar pairs. Remarkably, we found that increased degree of non-randomness leads to temperature dependent variation in number density of sodium ions. Furthermore, the present study provides the strong link between the dynamics of the alkali ions and different sites associated with it in soda-lime silicate glasses. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, thin films of cobalt oxide (Co3O4) have been grown by the metal-organic chemical vapor deposition (MOCVD) technique on stainless steel substrate at two preferred temperatures (450 degrees C and 500 degrees C), using cobalt acetylacetonate dihydrate as precursor. Spherical as well as columnar microstructures of Co3O4 have been observed under controlled growth conditions. Further investigations reveal these films are phase-pure, well crystallized and carbon-free. High-resolution TEM analysis confirms that each columnar structure is a continuous stack of minute crystals. Comparative study between these Co3O4 films grown at 450 degrees C and 500 degrees C has been carried out for their application as negative electrodes in Li-ion batteries. Our method of electrode fabrication leads to a coating of active material directly on current collector without any use of external additives. A high specific capacity of 1168 micro Ah cm(-2) mu m(-1) has been measured reproducibly for the film deposited at 500 degrees C with columnar morphology. Further, high rate capability is observed when cycled at different current densities. The Co3O4 electrode with columnar structure has a specific capacity 38% higher than the electrode with spherical microstructure (grown at 450 degrees C). Impedance measurements on the Co3O4 electrode grown at 500 degrees C also carried out to study the kinetics of the electrode process. (C) 2014 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results from interface shear tests on sand-geosynthetic interfaces are examined in light of surface roughness of the interacting geosynthetic material. Three different types of interface shear tests carried out in the frame of direct shear-test setup are compared to understand the effect of parameters like box fixity and symmetry on the interface shear characteristics. Formation of shear bands close to the interface is visualized in the tests and the bands are analyzed using image-segmentation techniques in MATLAB. A woven geotextile with moderate roughness and a geomembrane with minimal roughness are used in the tests. The effect of surface roughness of the geosynthetic material on the formation of shear bands, movement of sand particles, and interface shear parameters are studied and compared through visual observations, image analyses, and image-segmentation techniques.