219 resultados para antisocial behaviour


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of scaling (1 μm to 0.09 μm) on the non-quasi-static (NQS) behaviour of the MOSFET has been studied using process and device simulation. It is shown that under fixed gate (Vgs) and drain (Vds) bias voltages, the NQS transition frequency (fNQS) scales as 1/Leff rather than 1/L2eff due to the velocity saturation effect. However, under the practical scaling guidelines, considering the scaling of supply voltage as well, fNQS shows a turn around effect at the sub 100 nm regime. The relation between unity gain frequency (ft) and fNQS is also evaluated and it is shown that ft and fNQS have similar trends with scaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The composites consisting of amorphous matrix reinforced with crystalline dendrites offer extraordinary combinations of strength, stiffness, and toughness and can be processed in bulk. Hence, they have been receiving intense research interest, with a primary focus to study their mechanical properties. In this paper, the temperature and strain rate effects on the uniaxial compression response of a tailored bulk metallic glass (BMG) composite has been investigated. Experimental results show that at temperatures ranging between ambient to 500 K and at all strain rates; the onset of plastic deformation in the composite is controlled by that in the dendrites. As the temperature is increased to the glass transition temperature of the matrix and beyond, flow in the amorphous matrix occurs readily and hence it dictates the composite's response. The role of the constituent phases in controlling the deformation mechanism of the composite has been verified by assessing the strain rate sensitivity and the activation volume for deformation. The composite is rate sensitive at room temperature with values of strain rate sensitivity and activation volume being similar to that of the dendrites. At test temperatures near to the glass transition temperature, the composite however becomes rate-insensitive corresponding to that of the matrix phase. At low strain rates, serrated flow akin to that of dynamic strain ageing in crystalline alloys was observed and the serration magnitude decreases with increasing temperature. Initiation of the shear bands at the dendrite/matrix interface and propagation of them through the matrix ligaments until their arrest at another interface is the responsible mechanism for this. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chips produced by turning a commercial grade pure magnesium billet were consolidated by solid state recycling technique of cold compaction followed by hot extrusion. The cold compacted billets were extruded at four different temperatures: 250 degrees C, 300 degrees C, 350 degrees C and 400 degrees C. For the purpose of comparison, cast magnesium (pure) billets were extruded under similar conditions. Extruded products were characterized for damping properties. Damping capacity and dynamic modulus was measured as a function of time and temperature at a fixed frequency of 5 Hz 10 to 14% increase in damping capacity was observed in chip consolidated products compared to reference material. Microstructural changes after the temperature sweep tests were examined. Chip boundaries present in consolidated products were observed to suppress grain coarsening which otherwise was significant in reference material. The present work is significant from the viewpoint of recycling of machined chips and development of sustainable manufacturing processes. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent times the demand of ultra-low carbon steel (ULCS) with improved mechanical properties such as good ductility and good workability has been increased as it is used to produce cold-rolled steel sheets for automobiles. For producing ULCS efficiently, it is necessary to improve the productivity of the vacuum degassers such as RH, DH and tank degasser. Recently, it has been claimed that using a new process, called REDA (revolutionary degassing activator), one can achieve the carbon content below 10 ppm in less time. As such, REDA process has not been studied thoroughly in terms of fluid flow and mass transfer which is a necessary precursor to understand and design this process. Therefore, momentum and mass transfer of the process has been studied by solving momentum and species balance equations along with k-epsilon turbulent model in two-dimension (2D) for REDA process. Similarly, computational fluid dynamic studies have been made in 2D for tank and RH degassers to compare them with REDA process. Computational results have been validated with published experimental and theoretical data. It is found that REDA process is the most efficient among all these processes in terms of mixing efficiency. Fluid flow phenomena have been studied in details for REDA process by varying gas flow rate, depth of immersed snorkel in the steel, diameter of the snorkel and change in vacuum pressure. It is found that design of snorkel affects the melt circulation in the bath significantly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of microstructure and texture in Hexagonal Close Pack commercially pure titanium has been studied in torsion in a strain rate regime of 0.001 to 1 s(-1). Free end torsion tests carried out on titanium rods indicated higher stress levels at higher strain rate but negligible change in the strain-hardening behaviour. There was a decrease in the intra-granular misorientation while a negligible change in the amount of contraction and extension twins was observed with increase in strain rate. The deformed samples showed a C-1 fibre (c-axis is first rotated 90 degrees in shear direction and then +30 degrees in shear plane direction) at all the strain rates. With the increase in strain rate, there was an increase in the intensity of the C-1 fibre and it became more heterogeneous with a strong {11(2)over-bar6}< 2(8)over-bar)63 > component. In the absence of extensive twinning, pyramidal < c+a > slip system is attributed for the observed deformation texture. The present investigation, therefore, substantiates the theoretical prediction of increase in strength of texture with strain rate in torsion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Owing to its favourable physical, chemical and rheological properties, densely compacted bentonite or bentonite-sand mix is considered as a suitable buffer material in deep geological repositories to store high level nuclear waste. Iodine-129 is one of the significant nuclides in the high level waste owing to its long half life and poor sorption onto most geologic media. Bentonite by virtue of negatively charged surface has negligible affinity to retain iodide ions. As organo-bentonites are known to retain iodide ions, the present study characterizes hexadecylpyridinium chloride (HDPyCl.H2O) treated bentonite from Barmer India (referred as HDPy+B) for physico-chemical properties, engineering properties and the iodide adsorption behavior of the organo clay. Batch experiments revealed that HDPy+ ions are largely retained (94 % retention) via cation exchange; the ion-exchange process neutralizes the negative surface charge and bridges clay particles leading to reduction in Atterberg limits, clay content and sediment volume. The organo clay retains iodide by Coulombic attraction (at primary sites) and anion exchange (at secondary sites). The free-energy change (Delta G (o) = -25.5 kJ/mol) value indicated that iodide retention by organo clay is favored physical adsorption process. Iodide adsorption capacity of organo clay decreased significantly (85-100 %) on dilution with 50-80 % bentonite. On the other hand, dilution of bentonite with 50 % organo clay caused 58 % reduction in swell potential and 21 % reduction in swell pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this communication, we report the synthesis and characterisation of a new luminescent liquid crystalline material, 4,6-bis (4-butoxyphenyl)-2-methoxynicotinonitrile (3). We have confirmed its structure by Fourier transform infrared and 1H nuclear magnetic resonance spectroscopy, elemental analysis and X-ray single crystal diffraction studies. The newly synthesised compound crystallises in a monoclinic system with the space group C2/c and its cell parameters are found to be a?=?25.181(4) angstrom, b?=?15.651(4)angstrom, c?=?12.703(19) angstrom, V?=?4880.4 (16) angstrom, Z?=?8. The results indicate that the presence of weak CH center dot center dot center dot O and CH center dot center dot center dot N hydrogen bonding as short-range intermolecular interactions are responsible for the formation of its crystal assembly. The measured torsion angle shows the existence of a distorted structure for the molecule wherein 4-butoxyphenylene ring substituent at the fourth position of the central pyridine ring forms a torsion angle chiC(4), C(3), C(10), C(19)] of 40.55 degrees. Its liquid crystalline behaviour was investigated with the aid of polarised optical microscopy and differential scanning calorimetry. The study reveals that the compound displays a broad nematic phase in the range of 78112 degrees C. Further, solution phase optical studies indicate that it is a blue light emitter in different non-polar and polar organic solvents at a concentration of 10-5M.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of a computer emerged from modeling and analyzing concepts (ideas) to generate concepts. Research into methods for supporting conceptual design using automated synthesis had attracted much attention in the past decades. To find out how designers synthesize solution concepts for multi-state mechanical devices, ten experimental studies were conducted. Observations from these empirical studies would be used as the basis to develop knowledge involved in the multi-state design synthesis process. In this paper, we propose a computational representation for expressing the multi-state design task and for enumerating multi-state behaviors of kinematic pairs and mechanisms. This computational representation would be used to formulate computational methods for the synthesis process to develop a system for supporting design synthesis of multiple state mechanical devices by generating a comprehensive variety of solution alternatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report thermopower (S) and electrical resistivity (rho (2DES) ) measurements in low-density (10(14) m(-2)), mesoscopic two-dimensional electron systems (2DESs) in GaAs/AlGaAs heterostructures at sub-Kelvin temperatures. We observe at temperatures a parts per thousand(2)0.7 K a linearly growing S as a function of temperature indicating metal-like behaviour. Interestingly this metallicity is not Drude-like, showing several unusual characteristics: (i) the magnitude of S exceeds the Mott prediction valid for non-interacting metallic 2DESs at similar carrier densities by over two orders of magnitude; and (ii) rho (2DES) in this regime is two orders of magnitude greater than the quantum of resistance h/e (2) and shows very little temperature-dependence. We provide evidence suggesting that these observations arise due to the formation of novel quasiparticles in the 2DES that are not electron-like. Finally, rho (2DES) and S show an intriguing decoupling in their density-dependence, the latter showing striking oscillations and even sign changes that are completely absent in the resistivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, ZnFe2O4 nanoparticles were synthesized by the chemical co-precipitation followed by calcinations at 473 and 673K for 4h. Particle sizes obtained were 4 and 6nm for the calcination temperatures of 473 and 673K, respectively. To study the origin of system's low temperature spin dynamic behaviour, temperature dependence of susceptibility was investigated as a function of particle size and frequency. Slight increase in the grain size from 4nm at 473K to 6nm at 673K has led to a peak shift of temperature dependence of susceptibility measured at a constant frequency of 400Hz. Temperature dependence of at different frequencies also resulted in peak shift. Relaxation time dependence of peak temperature obeys a power law, which provides the fitting parameters within the range of superparamagnetic nature of the particles. Further, dependence of relaxation time and peak temperature obeys VogelFulcher law rather than NeelBrown equation demonstrating that the particles follow the behaviour of superparamagnetism of slightly interacting system. Spinlattice, T-1 and spinspin, T-2 relaxivity of proton of the water molecule in the presence of chitosan-coated superparamagnetic ZnFe2O4 nanoparticle yields the values of 0.002 and 0.360s(1)perppm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research was aimed at determining optimum Cu content for the alloy design of SUS 30411 austenitic steels having enhanced heat and corrosion resistance. Samples of the steel containing 1, 3, and 5 wt.% Cu were subjected to repeated heating and cooling to a temperature of 760 degrees C and to a maximum of 15 cycles. Hardness measurement and the corrosion behaviour in 1M NaCl solution were evaluated. The hardness increases with an increase in the number of heating cycles for the three compositions. The hardening response to the thermal cycles is however higher for the 1 wt.% Cu composition and decreases with an increase in the Cu wt.%. The SUS 30411 steel containing 3 wt.% Cu exhibited the least susceptibility to corrosion in the 1M NaCl solution irrespective of the number of heating cycles. The SUS 30411 steel containing 1 wt.% Cu was found to exhibit the highest susceptibility to corrosion for all heating cycles compared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deformation behaviour of macrocrystalline and nanocrystalline nickel shows a striking similarity in terms of higher intragranular misorientation and a texture with dominant Brass component on rolling. This is in contrast to microcrystalline nickel, with lower intragranular misorientation and typical Copper type texture. This has been attributed to the free surfaces in macrocrystalline sample and grain boundaries in nanocrystalline sample. Experimental evidence of `Grain Boundary Affected Zone' (GBAZ) showing multi-slip in contrast to limited slip in the grain interiors has been provided. The similarity in evolution of texture and intragranular misorientation is explained on the basis of reduced contribution from the GBAZ at the two extreme length scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damaged articulating joints can be repaired or replaced with synthetic biomaterials, which can release wear debris due to articulation, leading to the osteolysis. In a recent work, it has been shown that it is possible to achieve a better combination of flexural strength/fracture toughness as well as in vitro bioactivity and cytocompatibility properties in spark plasma sintered hydroxyapatite-titanium (HA-Ti) composites. Although hydroxyapatite and titanium are well documented for their good biocompatibility, nanosized hydroxyapatite (HA) and titanium (Ti) particles can cause severe toxicity to cells. In order to address this issue, fretting wear study of HA-Ti composites under dry and wet (1x SBF, supplemented with 5 g l(-1) bovine serum albumin (BSA)) condition was performed to assess the wear resistance as well as wear debris formation, in vitro. The experimental results reveal one order of magnitude lower wear rate for HA-10 wt% Ti (7.5 x 10(-5) mm(3) N-1 m(-1)) composite than monolithic HA (3.9 x 10(-4) mm(3) N-1 m(-1)) in simulated body fluid. The difference in the tribological properties has been analyzed in the light of phase assemblages and mechanical properties. Overall, the results suggest the potential use of HA-Ti composites over existing HA-based biocomposites in orthopedic as well as dental applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents the investigation of the coordination behavior of a newly synthesized tricarboxylate ligand, obtained by joining imidazole dicarboxylic acid and 4-carboxybenzyl moieties cbimdaH(3), 1-(4-carboxybenzyl)-1H-imidazole-4,5-dicarboxylic acid]. Two novel coordination polymers were obtained through solvothermal reactions under similar conditions namely Sr(cbimdaH)(H2O)](n) (1) and Cd-2(cbimdaH)(2)(H2O)(6)](n)center dot(DMF)(3n)(H2O)(3n) (2), with the ligand behaving as a dianionic tricarboxylate linker. The single crystal X-ray structures show that while 1 forms a 3D coordination polymer, 2 forms a 1D polymer which is further assembled in three dimensions through supramolecular interactions (H-bonding). Complex 1 consists of Sr2+ ions in a distorted dodecahedral coordination geometry, while 2 consists of Cd2+ ions in distorted pentagonal bipyramidal geometries. A topology study reveals that 1 has a new topology based on the 5,6-coordinated 3D net architecture. The luminescence properties of the complexes in the solid state and their thermal stabilities were studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The First Order Reversal Curve (FORC) method has been utilised to understand the magnetization reversal and the extent of the irreversible magnetization of the soft CoFe2O4-hard SrFe12O19 nanocomposite in the nonexchange spring and the exchange spring regime. The single peak switching behaviour in the FORC distribution of the exchange spring composite confirms the coherent reversal of the soft and hard phases. The onset of the nucleation field and the magnetization reversal by domain wall movement are also evident from the FORC measurements. (C) 2013 AIP Publishing LLC.