213 resultados para Uniformly Convex
Resumo:
This study was aimed at evaluating the static shear strength and fatigue properties of the newly developed refilled friction stir spot welded AA 6061-T6 joints. The keyhole, the process disadvantage of conventional friction stir spot welding, was refilled successfully, using an additional filler plate, with specially designed tools. Two different tool profiles, namely, convex and concave, were used for the refilling process. Sound and defect free joints were obtained by the refilling process. Joints refilled with convex tools showed better static shear strength than those with the concave ones. The variation of microhardness in different regions of the weld was analysed. Fatigue tests were conducted on the lap shear specimens at a stress ratio of R=0.1. The optical micrographs of the welds after fatigue failure in both the conventional and refilled processes were examined to study the fatigue crack propagation and failure modes.
Resumo:
In the search for newer distributed phases that can be used in Ni-composite coatings, inexpensive and naturally available pumice has been identified as a potential candidate material. The composition of the pumice mineral as determined by Rietveld analysis shows the presence of corundum, quartz, mulllite, moganite and coesite phases. Pumice stone is crushed, ball-milled, dried and dispersed in a nickel sulfamate bath and Ni-pumice coatings are electrodeposited at different current densities and magnetic agitation speeds. Pumice particles are uniformly incorporated in the nickel matrix and Ni-pumice composite coatings with microhardness as high as 540 HK are obtained at the lowest applied current density. In the electrodeposited Ni-pumice coatings, the grain size of Ni increases with the applied current density. The overall intensity of texture development is slightly stronger for the Ni-pumice composite coating compared to plain Ni coating and the texture evolution is possibly not the strongest deciding factor for the enhanced properties of Ni-pumice coatings. The wear and oxidation resistances of Ni-pumice coating are commensurate with that of Ni-SiC coating electrodeposited under similar conditions. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Our work is motivated by impromptu (or ``as-you-go'') deployment of wireless relay nodes along a path, a need that arises in many situations. In this paper, the path is modeled as starting at the origin (where there is the data sink, e.g., the control center), and evolving randomly over a lattice in the positive quadrant. A person walks along the path deploying relay nodes as he goes. At each step, the path can, randomly, either continue in the same direction or take a turn, or come to an end, at which point a data source (e.g., a sensor) has to be placed, that will send packets to the data sink. A decision has to be made at each step whether or not to place a wireless relay node. Assuming that the packet generation rate by the source is very low, and simple link-by-link scheduling, we consider the problem of sequential relay placement so as to minimize the expectation of an end-to-end cost metric (a linear combination of the sum of convex hop costs and the number of relays placed). This impromptu relay placement problem is formulated as a total cost Markov decision process. First, we derive the optimal policy in terms of an optimal placement set and show that this set is characterized by a boundary (with respect to the position of the last placed relay) beyond which it is optimal to place the next relay. Next, based on a simpler one-step-look-ahead characterization of the optimal policy, we propose an algorithm which is proved to converge to the optimal placement set in a finite number of steps and which is faster than value iteration. We show by simulations that the distance threshold based heuristic, usually assumed in the literature, is close to the optimal, provided that the threshold distance is carefully chosen. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Object. Insulin-like growth factor binding proteins (IGEBPs) have been implicated in the pathogenesis of glioma. In a previous study the authors demonstrated that IGFBP-3 is a novel glioblastoma biomarker associated with poor survival. Since signal transducer and activator of transcription 1 (STAT-1) has been shown to be regulated by IGFBP-3 during chondrogenesis and is a prosurvival and radioresistant molecule in different tumors, the aim in the present study was to explore the functional significance of IGFBP-3 in malignant glioma cells, to determine if STAT-1 is indeed regulated by IGFBP-3, and to study the potential of STAT-1 as a biomarker in glioblastoma. Methods. The functional significance of IGFBP-3 was investigated using the short hairpin (sh)RNA gene knockdown approach on U251MG cells. STAT-1 regulation by IGFBP-3 was tested on U251MG and U87MG cells by shRNA gene knockdown and exogenous treatment with recombinant IGFBP-3 protein. Subsequently, the expression of STAT-1 was analyzed with real-time reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) in glioblastoma and control brain tissues. Survival analyses were done on a uniformly treated prospective cohort of adults with newly diagnosed glioblastoma (136 patients) using Kaplan-Meier and Cox regression models. Results. IGFBP-3 knockdown significantly impaired proliferation, motility, migration, and invasive capacity of U251MG cells in vitro (p < 0.005). Exogenous overexpression of IGFBP-3 in U251MG and U87MG cells demonstrated STAT-1 regulation. The mean transcript levels (by real-time RT-PCR) and the mean labeling index of STAT-1 (by IHC) were significantly higher in glioblastoma than in control brain tissues (p = 0.0239 and p < 0.001, respectively). Multivariate survival analysis revealed that STAT-1 protein expression (HR 1.015, p = 0.033, 95% CI 1.001-1.029) along with patient age (HR 1.025, p = 0.005, 95% CI 1.008-1.042) were significant predictors of shorter survival in patients with glioblastoma. Conclusions. IGFBP-3 influences tumor cell proliferation, migration, and invasion and regulates STAT-1 expression in malignant glioma cells. STAT-1 is overexpressed in human glioblastoma tissues and emerges as a novel prognostic biomarker.
Resumo:
Let P be a set of n points in R-d. A point x is said to be a centerpoint of P if x is contained in every convex object that contains more than dn/d+1 points of P. We call a point x a strong centerpoint for a family of objects C if x is an element of P is contained in every object C is an element of C that contains more than a constant fraction of points of P. A strong centerpoint does not exist even for halfspaces in R-2. We prove that a strong centerpoint exists for axis-parallel boxes in Rd and give exact bounds. We then extend this to small strong epsilon-nets in the plane. Let epsilon(S)(i) represent the smallest real number in 0, 1] such that there exists an epsilon(S)(i)-net of size i with respect to S. We prove upper and lower bounds for epsilon(S)(i) where S is the family of axis-parallel rectangles, halfspaces and disks. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The nature of the signal due to light beam induced current (LBIC) at the remote contacts is verified as a lateral photovoltage for non-uniformly illuminated planar p-n junction devices; simulation and experimental results are presented. The limitations imposed by the ohmic contacts are successfully overcome by the introduction of capacitively coupled remote contacts, which yield similar results without any significant loss in the estimated material and device parameters. It is observed that the LBIC measurements introduce artefacts such as shift in peak position with increasing laser power. Simulation of LBIC signal as a function of characteristic length L-c of photo-generated carriers and for different beam diameters has resulted in the observed peak shifts, thus attributed to the finite size of the beam. Further, the idea of capacitively coupled contacts has been extended to contactless measurements using pressure contacts with an oxidized aluminium electrodes. This technique avoids the contagious sample processing steps, which may introduce unintentional defects and contaminants into the material and devices under observation. Thus, we present here, the remote contact LBIC as a practically non-destructive tool in the evaluation of device parameters and welcome its use during fabrication steps. (C) 2014 AIP Publishing LLC.
Resumo:
`'Cassie'' state of wetting can be established by trapping air pockets on the crevices of textured hydrophobic surfaces, leading to significant drag reduction. However, this drag reduction cannot be sustained due to gradual dissolution of trapped air into water. In this paper, we explore the possibility of sustaining the underwater Cassie state of wetting in a microchannel by controlling the solubility of air in water; the solubility being changed by controlling the local absolute pressure near the surface. We show that using this method, we can in fact make the water locally supersaturated with air thus encouraging the growth of trapped air pockets on the surface. In this case, the water acts as a pumping medium, delivering air to the crevices of the hydrophobic surface in the microchannel, where the presence of air pockets is most beneficial from the drag reduction perspective. In our experiments, the air trapped on a textured surface is visualized using total internal reflection based technique, at different local absolute pressures with the pressure drop (or drag) also being simultaneously measured. We find that, by controlling the pressure and hence the solubility close to the surface, we can either shrink or grow the trapped air bubbles, uniformly over a large surface area. The experiments show that, by precisely controlling the pressure and hence the solubility we can sustain the `'Cassie state'' over extended periods of time. This method thus provides a means of getting sustained drag reduction from a textured hydrophobic surface in channel flows. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Information available in frequency response data is equivalently available in the time domain as a response due to an impulse excitation. The idea to pursue this equivalence to estimate series capacitance is linked to the well-known fact that under impulse excitation, the line/neutral current in a transformer has three distinct components, of which, the initial capacitive component is the first to manifest, followed by the oscillatory and inductive components. Of these, the capacitive component is temporally well separated from the rest-a crucial feature permitting its direct access and analysis. Further, the winding initially behaves as a pure capacitive network, so the initial component must obviously originate from only the (series and shunt) capacitances. With this logic, it should therefore be possible to estimate series capacitance, just by measuring the initial capacitive component of line current and the total shunt capacitance. The principle of the method and details of its implementation on two actual isolated transformerwindings (uniformly wound) are presented. For implementation, a low-voltage recurrent surge generator, a current probe, and a digital oscilloscope are all that is needed. The method is simple and requires no programming and needs least user intervention, thus paving the way for its widespread use.
Resumo:
Silver nanoparticles-anchored reduced graphene oxide (Ag-RGO) is prepared by simultaneous reduction of graphene oxide and Ag+ ions in an aqueous medium by ethylene glycol as the reducing agent. Ag particles of average size of 4.7 nm were uniformly distributed on the RGO sheets. Oxygen reduction reaction (ORR) is studied on Ag-RGO catalyst in both aqueous and non-aqueous electrolytes by using cyclic voltammetry and rotating disk electrode techniques. As the interest in non-aqueous electrolyte is to study the catalytic performance of Ag-RGO for rechargeable Li-O-2 cells, these cells are assembled and characterized. Li-O-2 cells with Ag-RGO as the oxygen electrode catalyst are subjected to charge-discharge cycling at several current densities. A discharge capacity of 11 950 mA h g(-1) (11.29 mA h cm(-2)) is obtained initially at low current density. Although there is a decrease in the capacity on repeated discharge-charge cycling initially, a stable capacity is observed for about 30 cycles. The results indicate that Ag-RGO is a suitable catalyst for rechargeable Li-O-2 cells.
Resumo:
The occurrence of spurious solutions is a well-known limitation of the standard nodal finite element method when applied to electromagnetic problems. The two commonly used remedies that are used to address this problem are (i) The addition of a penalty term with the penalty factor based on the local dielectric constant, and which reduces to a Helmholtz form on homogeneous domains (regularized formulation); (ii) A formulation based on a vector and a scalar potential. Both these strategies have some shortcomings. The penalty method does not completely get rid of the spurious modes, and both methods are incapable of predicting singular eigenvalues in non-convex domains. Some non-zero spurious eigenvalues are also predicted by these methods on non-convex domains. In this work, we develop mixed finite element formulations which predict the eigenfrequencies (including their multiplicities) accurately, even for nonconvex domains. The main feature of the proposed mixed finite element formulation is that no ad-hoc terms are added to the formulation as in the penalty formulation, and the improvement is achieved purely by an appropriate choice of finite element spaces for the different variables. We show that the formulation works even for inhomogeneous domains where `double noding' is used to enforce the appropriate continuity requirements at an interface. For two-dimensional problems, the shape of the domain can be arbitrary, while for the three-dimensional ones, with our current formulation, only regular domains (which can be nonconvex) can be modeled. Since eigenfrequencies are modeled accurately, these elements also yield accurate results for driven problems. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we propose an eigen framework for transmit beamforming for single-hop and dual-hop network models with single antenna receivers. In cases where number of receivers is not more than three, the proposed Eigen approach is vastly superior in terms of ease of implementation and computational complexity compared with the existing convex-relaxation-based approaches. The essential premise is that the precoding problems can be posed as equivalent optimization problems of searching for an optimal vector in the joint numerical range of Hermitian matrices. We show that the latter problem has two convex approximations: the first one is a semi-definite program that yields a lower bound on the solution, and the second one is a linear matrix inequality that yields an upper bound on the solution. We study the performance of the proposed and existing techniques using numerical simulations.
Resumo:
Carbon nanotubes (CNTs) uniformly decorated with nano-anatase TiO2 particles corresponding to different TiO2-CNT weight ratios (up to 90 % TiO2:10 % CNT) were prepared by employing sol-gel process. The nanocomposites were characterized by X-ray diffraction, IR, Raman, Scanning electron microscopy, Transmission electron microscopy, Photoluminescence, BET surface area and diffuse reflectance measurements. The composites show visible light assisted photocatalytic property, for example, the 90 % TiO2-10 % CNT composite completely degrades Indigo Carmine dye within 1 h of exposure to visible light. Similarly, Orange G and Congo Red dyes were decomposed within 2 h under visible light irradiation. The excellent visible light photocatalytic property of the composite is attributed to the synergetic effect of photoexcitation and photosensitization. This is due to the special nanoarchitecture wherein TiO2 nanoparticles are anchored to CNT surface that provides high specific interfacial area for photon absorption and electron trapping. Visible light assisted degradation profile of Indigo Carmine in the presence of TiO2-CNT nanocomposite and TEM image of the TiO2-CNT nanocomposite.
Resumo:
Let P be a set of n points in R-d and F be a family of geometric objects. We call a point x is an element of P a strong centerpoint of P w.r.t..F if x is contained in all F is an element of F that contains more than cn points of P, where c is a fixed constant. A strong centerpoint does not exist even when F is the family of halfspaces in the plane. We prove the existence of strong centerpoints with exact constants for convex polytopes defined by a fixed set of orientations. We also prove the existence of strong centerpoints for abstract set systems with bounded intersection. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We report on an experimental study of the vertical impact of a concave nosed axisymmetric body on a free surface. Previous studies have shown that bodies with a convex nose, like a sphere, produce a well defined splash with a relatively large cavity behind the model. In contrast, we find that with a concave nose, there is hardly a splash and the cavity extent is greatly reduced. This may be explained by the fact that in the concave nosed case, the initial impact is between a confined air pocket and the free surface unlike in the convex nosed case. From measurements of the unsteady pressure in the concave nose portion, we show that in this case, the maximum pressures are significantly lower than the classically expected ``water hammer'' pressures and also lower than those generally measured on other geometries. Thus, the presence of an air pocket in the case of a concave nosed body adds an interesting dimension to the classical problem of impact of solid bodies on to a free surface. (C) 2015 AIP Publishing LLC.
Resumo:
Given a Boolean function , we say a triple (x, y, x + y) is a triangle in f if . A triangle-free function contains no triangle. If f differs from every triangle-free function on at least points, then f is said to be -far from triangle-free. In this work, we analyze the query complexity of testers that, with constant probability, distinguish triangle-free functions from those -far from triangle-free. Let the canonical tester for triangle-freeness denotes the algorithm that repeatedly picks x and y uniformly and independently at random from , queries f(x), f(y) and f(x + y), and checks whether f(x) = f(y) = f(x + y) = 1. Green showed that the canonical tester rejects functions -far from triangle-free with constant probability if its query complexity is a tower of 2's whose height is polynomial in . Fox later improved the height of the tower in Green's upper bound to . A trivial lower bound of on the query complexity is immediate. In this paper, we give the first non-trivial lower bound for the number of queries needed. We show that, for every small enough , there exists an integer such that for all there exists a function depending on all n variables which is -far from being triangle-free and requires queries for the canonical tester. We also show that the query complexity of any general (possibly adaptive) one-sided tester for triangle-freeness is at least square root of the query complexity of the corresponding canonical tester. Consequently, this means that any one-sided tester for triangle-freeness must make at least queries.