33 resultados para Uniformly Convex

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demixing is the task of identifying multiple signals given only their sum and prior information about their structures. Examples of demixing problems include (i) separating a signal that is sparse with respect to one basis from a signal that is sparse with respect to a second basis; (ii) decomposing an observed matrix into low-rank and sparse components; and (iii) identifying a binary codeword with impulsive corruptions. This thesis describes and analyzes a convex optimization framework for solving an array of demixing problems.

Our framework includes a random orientation model for the constituent signals that ensures the structures are incoherent. This work introduces a summary parameter, the statistical dimension, that reflects the intrinsic complexity of a signal. The main result indicates that the difficulty of demixing under this random model depends only on the total complexity of the constituent signals involved: demixing succeeds with high probability when the sum of the complexities is less than the ambient dimension; otherwise, it fails with high probability.

The fact that a phase transition between success and failure occurs in demixing is a consequence of a new inequality in conic integral geometry. Roughly speaking, this inequality asserts that a convex cone behaves like a subspace whose dimension is equal to the statistical dimension of the cone. When combined with a geometric optimality condition for demixing, this inequality provides precise quantitative information about the phase transition, including the location and width of the transition region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The connections between convexity and submodularity are explored, for purposes of minimizing and learning submodular set functions.

First, we develop a novel method for minimizing a particular class of submodular functions, which can be expressed as a sum of concave functions composed with modular functions. The basic algorithm uses an accelerated first order method applied to a smoothed version of its convex extension. The smoothing algorithm is particularly novel as it allows us to treat general concave potentials without needing to construct a piecewise linear approximation as with graph-based techniques.

Second, we derive the general conditions under which it is possible to find a minimizer of a submodular function via a convex problem. This provides a framework for developing submodular minimization algorithms. The framework is then used to develop several algorithms that can be run in a distributed fashion. This is particularly useful for applications where the submodular objective function consists of a sum of many terms, each term dependent on a small part of a large data set.

Lastly, we approach the problem of learning set functions from an unorthodox perspective---sparse reconstruction. We demonstrate an explicit connection between the problem of learning set functions from random evaluations and that of sparse signals. Based on the observation that the Fourier transform for set functions satisfies exactly the conditions needed for sparse reconstruction algorithms to work, we examine some different function classes under which uniform reconstruction is possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to investigate to what extent the known theory of subdifferentiability and generic differentiability of convex functions defined on open sets can be carried out in the context of convex functions defined on not necessarily open sets. Among the main results obtained I would like to mention a Kenderov type theorem (the subdifferential at a generic point is contained in a sphere), a generic Gâteaux differentiability result in Banach spaces of class S and a generic Fréchet differentiability result in Asplund spaces. At least two methods can be used to prove these results: first, a direct one, and second, a more general one, based on the theory of monotone operators. Since this last theory was previously developed essentially for monotone operators defined on open sets, it was necessary to extend it to the context of monotone operators defined on a larger class of sets, our "quasi open" sets. This is done in Chapter III. As a matter of fact, most of these results have an even more general nature and have roots in the theory of minimal usco maps, as shown in Chapter II.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many engineering applications face the problem of bounding the expected value of a quantity of interest (performance, risk, cost, etc.) that depends on stochastic uncertainties whose probability distribution is not known exactly. Optimal uncertainty quantification (OUQ) is a framework that aims at obtaining the best bound in these situations by explicitly incorporating available information about the distribution. Unfortunately, this often leads to non-convex optimization problems that are numerically expensive to solve.

This thesis emphasizes on efficient numerical algorithms for OUQ problems. It begins by investigating several classes of OUQ problems that can be reformulated as convex optimization problems. Conditions on the objective function and information constraints under which a convex formulation exists are presented. Since the size of the optimization problem can become quite large, solutions for scaling up are also discussed. Finally, the capability of analyzing a practical system through such convex formulations is demonstrated by a numerical example of energy storage placement in power grids.

When an equivalent convex formulation is unavailable, it is possible to find a convex problem that provides a meaningful bound for the original problem, also known as a convex relaxation. As an example, the thesis investigates the setting used in Hoeffding's inequality. The naive formulation requires solving a collection of non-convex polynomial optimization problems whose number grows doubly exponentially. After structures such as symmetry are exploited, it is shown that both the number and the size of the polynomial optimization problems can be reduced significantly. Each polynomial optimization problem is then bounded by its convex relaxation using sums-of-squares. These bounds are found to be tight in all the numerical examples tested in the thesis and are significantly better than Hoeffding's bounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the author presents a method called Convex Model Predictive Control (CMPC) to control systems whose states are elements of the rotation matrices SO(n) for n = 2, 3. This is done without charts or any local linearization, and instead is performed by operating over the orbitope of rotation matrices. This results in a novel model predictive control (MPC) scheme without the drawbacks associated with conventional linearization techniques such as slow computation time and local minima. Of particular emphasis is the application to aeronautical and vehicular systems, wherein the method removes many of the trigonometric terms associated with these systems’ state space equations. Furthermore, the method is shown to be compatible with many existing variants of MPC, including obstacle avoidance via Mixed Integer Linear Programming (MILP).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a growing interest in taking advantage of possible patterns and structures in data so as to extract the desired information and overcome the curse of dimensionality. In a wide range of applications, including computer vision, machine learning, medical imaging, and social networks, the signal that gives rise to the observations can be modeled to be approximately sparse and exploiting this fact can be very beneficial. This has led to an immense interest in the problem of efficiently reconstructing a sparse signal from limited linear observations. More recently, low-rank approximation techniques have become prominent tools to approach problems arising in machine learning, system identification and quantum tomography.

In sparse and low-rank estimation problems, the challenge is the inherent intractability of the objective function, and one needs efficient methods to capture the low-dimensionality of these models. Convex optimization is often a promising tool to attack such problems. An intractable problem with a combinatorial objective can often be "relaxed" to obtain a tractable but almost as powerful convex optimization problem. This dissertation studies convex optimization techniques that can take advantage of low-dimensional representations of the underlying high-dimensional data. We provide provable guarantees that ensure that the proposed algorithms will succeed under reasonable conditions, and answer questions of the following flavor:

  • For a given number of measurements, can we reliably estimate the true signal?
  • If so, how good is the reconstruction as a function of the model parameters?

More specifically, i) Focusing on linear inverse problems, we generalize the classical error bounds known for the least-squares technique to the lasso formulation, which incorporates the signal model. ii) We show that intuitive convex approaches do not perform as well as expected when it comes to signals that have multiple low-dimensional structures simultaneously. iii) Finally, we propose convex relaxations for the graph clustering problem and give sharp performance guarantees for a family of graphs arising from the so-called stochastic block model. We pay particular attention to the following aspects. For i) and ii), we aim to provide a general geometric framework, in which the results on sparse and low-rank estimation can be obtained as special cases. For i) and iii), we investigate the precise performance characterization, which yields the right constants in our bounds and the true dependence between the problem parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Riesz space with a Hausdorff, locally convex topology determined by Riesz seminorms is called a locally convex Riesz space. A sequence {xn} in a locally convex Riesz space L is said to converge locally to x ϵ L if for some topologically bounded set B and every real r ˃ 0 there exists N (r) and n ≥ N (r) implies x – xn ϵ rb. Local Cauchy sequences are defined analogously, and L is said to be locally complete if every local Cauchy sequence converges locally. Then L is locally complete if and only if every monotone local Cauchy sequence has a least upper bound. This is a somewhat more general form of the completeness criterion for Riesz – normed Riesz spaces given by Luxemburg and Zaanen. Locally complete, bound, locally convex Riesz spaces are barrelled. If the space is metrizable, local completeness and topological completeness are equivalent.

Two measures of the non-archimedean character of a non-archimedean Riesz space L are the smallest ideal Ao (L) such that quotient space is Archimedean and the ideal I (L) = { x ϵ L: for some 0 ≤ v ϵ L, n |x| ≤ v for n = 1, 2, …}. In general Ao (L) ᴝ I (L). If L is itself a quotient space, a necessary and sufficient condition that Ao (L) = I (L) is given. There is an example where Ao (L) ≠ I (L).

A necessary and sufficient condition that a Riesz space L have every quotient space Archimedean is that for every 0 ≤ u, v ϵ L there exist u1 = sup (inf (n v, u): n = 1, 2, …), and real numbers m1 and m2 such that m1 u1 ≥ v1 and m2 v1 ≥ u1. If, in addition, L is Dedekind σ – complete, then L may be represented as the space of all functions which vanish off finite subsets of some non-empty set.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of global optimization of M phase-incoherent signals in N complex dimensions is formulated. Then, by using the geometric approach of Landau and Slepian, conditions for optimality are established for N = 2 and the optimal signal sets are determined for M = 2, 3, 4, 6, and 12.

The method is the following: The signals are assumed to be equally probable and to have equal energy, and thus are represented by points ṡi, i = 1, 2, …, M, on the unit sphere S1 in CN. If Wik is the halfspace determined by ṡi and ṡk and containing ṡi, i.e. Wik = {ṙϵCN:| ≥ | ˂ṙ, ṡk˃|}, then the Ʀi = ∩/k≠i Wik, i = 1, 2, …, M, the maximum likelihood decision regions, partition S1. For additive complex Gaussian noise ṅ and a received signal ṙ = ṡie + ṅ, where ϴ is uniformly distributed over [0, 2π], the probability of correct decoding is PC = 1/πN ∞/ʃ/0 r2N-1e-(r2+1)U(r)dr, where U(r) = 1/M M/Ʃ/i=1 Ʀi ʃ/∩ S1 I0(2r | ˂ṡ, ṡi˃|)dσ(ṡ), and r = ǁṙǁ.

For N = 2, it is proved that U(r) ≤ ʃ/Cα I0(2r|˂ṡ, ṡi˃|)dσ(ṡ) – 2K/M. h(1/2K [Mσ(Cα)-σ(S1)]), where Cα = {ṡϵS1:|˂ṡ, ṡi˃| ≥ α}, K is the total number of boundaries of the net on S1 determined by the decision regions, and h is the strictly increasing strictly convex function of σ(Cα∩W), (where W is a halfspace not containing ṡi), given by h = ʃ/Cα∩W I0 (2r|˂ṡ, ṡi˃|)dσ(ṡ). Conditions for equality are established and these give rise to the globally optimal signal sets for M = 2, 3, 4, 6, and 12.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Six topics in incompressible, inviscid fluid flow involving vortex motion are presented. The stability of the unsteady flow field due to the vortex filament expanding under the influence of an axial compression is examined in the first chapter as a possible model of the vortex bursting observed in aircraft contrails. The filament with a stagnant core is found to be unstable to axisymmetric disturbances. For initial disturbances with the form of axisymmetric Kelvin waves, the filament with a uniformly rotating core is neutrally stable, but the compression causes the disturbance to undergo a rapid increase in amplitude. The time at which the increase occurs is, however, later than the observed bursting times, indicating the bursting phenomenon is not caused by this type of instability.

In the second and third chapters the stability of a steady vortex filament deformed by two-dimensional strain and shear flows, respectively, is examined. The steady deformations are in the plane of the vortex cross-section. Disturbances which deform the filament centerline into a wave which does not propagate along the filament are shown to be unstable and a method is described to calculate the wave number and corresponding growth rate of the amplified waves for a general distribution of vorticity in the vortex core.

In Chapter Four exact solutions are constructed for two-dimensional potential flow over a wing with a free ideal vortex standing over the wing. The loci of positions of the free vortex are found and the lift is calculated. It is found that the lift on the wing can be significantly increased by the free vortex.

The two-dimensional trajectories of an ideal vortex pair near an orifice are calculated in Chapter Five. Three geometries are examined, and the criteria for the vortices to travel away from the orifice are determined.

Finally, Chapter Six reproduces completely the paper, "Structure of a linear array of hollow vortices of finite cross-section," co-authored with G. R. Baker and P. G. Saffman. Free streamline theory is employed to construct an exact steady solution for a linear array of hollow, or stagnant cored vortices. If each vortex has area A and the separation is L, then there are two possible shapes if A^(1/2)/L is less than 0.38 and none if it is larger. The stability of the shapes to two-dimensional, periodic and symmetric disturbances is considered for hollow vortices. The more deformed of the two possible shapes is found to be unstable, while the less deformed shape is stable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some problems of edge waves and standing waves on beaches are examined.

The nonlinear interaction of a wave normally incident on a sloping beach with a subharmonic edge wave is studied. A two-timing expansion is used in the full nonlinear theory to obtain the modulation equations which describe the evolution of the waves. It is shown how large amplitude edge waves are produced; and the results of the theory are compared with some recent laboratory experiments.

Traveling edge waves are considered in two situations. First, the full linear theory is examined to find the finite depth effect on the edge waves produced by a moving pressure disturbance. In the second situation, a Stokes' expansion is used to discuss the nonlinear effects in shallow water edge waves traveling over a bottom of arbitrary shape. The results are compared with the ones of the full theory for a uniformly sloping bottom.

The finite amplitude effects for waves incident on a sloping beach, with perfect reflection, are considered. A Stokes' expansion is used in the full nonlinear theory to find the corrections to the dispersion relation for the cases of normal and oblique incidence.

Finally, an abstract formulation of the linear water waves problem is given in terms of a self adjoint but nonlocal operator. The appropriate spectral representations are developed for two particular cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dissertation is concerned with the mathematical study of various network problems. First, three real-world networks are considered: (i) the human brain network (ii) communication networks, (iii) electric power networks. Although these networks perform very different tasks, they share similar mathematical foundations. The high-level goal is to analyze and/or synthesis each of these systems from a “control and optimization” point of view. After studying these three real-world networks, two abstract network problems are also explored, which are motivated by power systems. The first one is “flow optimization over a flow network” and the second one is “nonlinear optimization over a generalized weighted graph”. The results derived in this dissertation are summarized below.

Brain Networks: Neuroimaging data reveals the coordinated activity of spatially distinct brain regions, which may be represented mathematically as a network of nodes (brain regions) and links (interdependencies). To obtain the brain connectivity network, the graphs associated with the correlation matrix and the inverse covariance matrix—describing marginal and conditional dependencies between brain regions—have been proposed in the literature. A question arises as to whether any of these graphs provides useful information about the brain connectivity. Due to the electrical properties of the brain, this problem will be investigated in the context of electrical circuits. First, we consider an electric circuit model and show that the inverse covariance matrix of the node voltages reveals the topology of the circuit. Second, we study the problem of finding the topology of the circuit based on only measurement. In this case, by assuming that the circuit is hidden inside a black box and only the nodal signals are available for measurement, the aim is to find the topology of the circuit when a limited number of samples are available. For this purpose, we deploy the graphical lasso technique to estimate a sparse inverse covariance matrix. It is shown that the graphical lasso may find most of the circuit topology if the exact covariance matrix is well-conditioned. However, it may fail to work well when this matrix is ill-conditioned. To deal with ill-conditioned matrices, we propose a small modification to the graphical lasso algorithm and demonstrate its performance. Finally, the technique developed in this work will be applied to the resting-state fMRI data of a number of healthy subjects.

Communication Networks: Congestion control techniques aim to adjust the transmission rates of competing users in the Internet in such a way that the network resources are shared efficiently. Despite the progress in the analysis and synthesis of the Internet congestion control, almost all existing fluid models of congestion control assume that every link in the path of a flow observes the original source rate. To address this issue, a more accurate model is derived in this work for the behavior of the network under an arbitrary congestion controller, which takes into account of the effect of buffering (queueing) on data flows. Using this model, it is proved that the well-known Internet congestion control algorithms may no longer be stable for the common pricing schemes, unless a sufficient condition is satisfied. It is also shown that these algorithms are guaranteed to be stable if a new pricing mechanism is used.

Electrical Power Networks: Optimal power flow (OPF) has been one of the most studied problems for power systems since its introduction by Carpentier in 1962. This problem is concerned with finding an optimal operating point of a power network minimizing the total power generation cost subject to network and physical constraints. It is well known that OPF is computationally hard to solve due to the nonlinear interrelation among the optimization variables. The objective is to identify a large class of networks over which every OPF problem can be solved in polynomial time. To this end, a convex relaxation is proposed, which solves the OPF problem exactly for every radial network and every meshed network with a sufficient number of phase shifters, provided power over-delivery is allowed. The concept of “power over-delivery” is equivalent to relaxing the power balance equations to inequality constraints.

Flow Networks: In this part of the dissertation, the minimum-cost flow problem over an arbitrary flow network is considered. In this problem, each node is associated with some possibly unknown injection, each line has two unknown flows at its ends related to each other via a nonlinear function, and all injections and flows need to satisfy certain box constraints. This problem, named generalized network flow (GNF), is highly non-convex due to its nonlinear equality constraints. Under the assumption of monotonicity and convexity of the flow and cost functions, a convex relaxation is proposed, which always finds the optimal injections. A primary application of this work is in the OPF problem. The results of this work on GNF prove that the relaxation on power balance equations (i.e., load over-delivery) is not needed in practice under a very mild angle assumption.

Generalized Weighted Graphs: Motivated by power optimizations, this part aims to find a global optimization technique for a nonlinear optimization defined over a generalized weighted graph. Every edge of this type of graph is associated with a weight set corresponding to the known parameters of the optimization (e.g., the coefficients). The motivation behind this problem is to investigate how the (hidden) structure of a given real/complex valued optimization makes the problem easy to solve, and indeed the generalized weighted graph is introduced to capture the structure of an optimization. Various sufficient conditions are derived, which relate the polynomial-time solvability of different classes of optimization problems to weak properties of the generalized weighted graph such as its topology and the sign definiteness of its weight sets. As an application, it is proved that a broad class of real and complex optimizations over power networks are polynomial-time solvable due to the passivity of transmission lines and transformers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With data centers being the supporting infrastructure for a wide range of IT services, their efficiency has become a big concern to operators, as well as to society, for both economic and environmental reasons. The goal of this thesis is to design energy-efficient algorithms that reduce energy cost while minimizing compromise to service. We focus on the algorithmic challenges at different levels of energy optimization across the data center stack. The algorithmic challenge at the device level is to improve the energy efficiency of a single computational device via techniques such as job scheduling and speed scaling. We analyze the common speed scaling algorithms in both the worst-case model and stochastic model to answer some fundamental issues in the design of speed scaling algorithms. The algorithmic challenge at the local data center level is to dynamically allocate resources (e.g., servers) and to dispatch the workload in a data center. We develop an online algorithm to make a data center more power-proportional by dynamically adapting the number of active servers. The algorithmic challenge at the global data center level is to dispatch the workload across multiple data centers, considering the geographical diversity of electricity price, availability of renewable energy, and network propagation delay. We propose algorithms to jointly optimize routing and provisioning in an online manner. Motivated by the above online decision problems, we move on to study a general class of online problem named "smoothed online convex optimization", which seeks to minimize the sum of a sequence of convex functions when "smooth" solutions are preferred. This model allows us to bridge different research communities and help us get a more fundamental understanding of general online decision problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Home to hundreds of millions of souls and land of excessiveness, the Himalaya is also the locus of a unique seismicity whose scope and peculiarities still remain to this day somewhat mysterious. Having claimed the lives of kings, or turned ancient timeworn cities into heaps of rubbles and ruins, earthquakes eerily inhabit Nepalese folk tales with the fatalistic message that nothing lasts forever. From a scientific point of view as much as from a human perspective, solving the mysteries of Himalayan seismicity thus represents a challenge of prime importance. Documenting geodetic strain across the Nepal Himalaya with various GPS and leveling data, we show that unlike other subduction zones that exhibit a heterogeneous and patchy coupling pattern along strike, the last hundred kilometers of the Main Himalayan Thrust fault, or MHT, appear to be uniformly locked, devoid of any of the “creeping barriers” that traditionally ward off the propagation of large events. The approximately 20 mm/yr of reckoned convergence across the Himalaya matching previously established estimates of the secular deformation at the front of the arc, the slip accumulated at depth has to somehow elastically propagate all the way to the surface at some point. And yet, neither large events from the past nor currently recorded microseismicity nearly compensate for the massive moment deficit that quietly builds up under the giant mountains. Along with this large unbalanced moment deficit, the uncommonly homogeneous coupling pattern on the MHT raises the question of whether or not the locked portion of the MHT can rupture all at once in a giant earthquake. Univocally answering this question appears contingent on the still elusive estimate of the magnitude of the largest possible earthquake in the Himalaya, and requires tight constraints on local fault properties. What makes the Himalaya enigmatic also makes it the potential source of an incredible wealth of information, and we exploit some of the oddities of Himalayan seismicity in an effort to improve the understanding of earthquake physics and cipher out the properties of the MHT. Thanks to the Himalaya, the Indo-Gangetic plain is deluged each year under a tremendous amount of water during the annual summer monsoon that collects and bears down on the Indian plate enough to pull it away from the Eurasian plate slightly, temporarily relieving a small portion of the stress mounting on the MHT. As the rainwater evaporates in the dry winter season, the plate rebounds and tension is increased back on the fault. Interestingly, the mild waggle of stress induced by the monsoon rains is about the same size as that from solid-Earth tides which gently tug at the planets solid layers, but whereas changes in earthquake frequency correspond with the annually occurring monsoon, there is no such correlation with Earth tides, which oscillate back-and-forth twice a day. We therefore investigate the general response of the creeping and seismogenic parts of MHT to periodic stresses in order to link these observations to physical parameters. First, the response of the creeping part of the MHT is analyzed with a simple spring-and-slider system bearing rate-strengthening rheology, and we show that at the transition with the locked zone, where the friction becomes near velocity neutral, the response of the slip rate may be amplified at some periods, which values are analytically related to the physical parameters of the problem. Such predictions therefore hold the potential of constraining fault properties on the MHT, but still await observational counterparts to be applied, as nothing indicates that the variations of seismicity rate on the locked part of the MHT are the direct expressions of variations of the slip rate on its creeping part, and no variations of the slip rate have been singled out from the GPS measurements to this day. When shifting to the locked seismogenic part of the MHT, spring-and-slider models with rate-weakening rheology are insufficient to explain the contrasted responses of the seismicity to the periodic loads that tides and monsoon both place on the MHT. Instead, we resort to numerical simulations using the Boundary Integral CYCLes of Earthquakes algorithm and examine the response of a 2D finite fault embedded with a rate-weakening patch to harmonic stress perturbations of various periods. We show that such simulations are able to reproduce results consistent with a gradual amplification of sensitivity as the perturbing period get larger, up to a critical period corresponding to the characteristic time of evolution of the seismicity in response to a step-like perturbation of stress. This increase of sensitivity was not reproduced by simple 1D-spring-slider systems, probably because of the complexity of the nucleation process, reproduced only by 2D-fault models. When the nucleation zone is close to its critical unstable size, its growth becomes highly sensitive to any external perturbations and the timings of produced events may therefore find themselves highly affected. A fully analytical framework has yet to be developed and further work is needed to fully describe the behavior of the fault in terms of physical parameters, which will likely provide the keys to deduce constitutive properties of the MHT from seismological observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A central objective in signal processing is to infer meaningful information from a set of measurements or data. While most signal models have an overdetermined structure (the number of unknowns less than the number of equations), traditionally very few statistical estimation problems have considered a data model which is underdetermined (number of unknowns more than the number of equations). However, in recent times, an explosion of theoretical and computational methods have been developed primarily to study underdetermined systems by imposing sparsity on the unknown variables. This is motivated by the observation that inspite of the huge volume of data that arises in sensor networks, genomics, imaging, particle physics, web search etc., their information content is often much smaller compared to the number of raw measurements. This has given rise to the possibility of reducing the number of measurements by down sampling the data, which automatically gives rise to underdetermined systems.

In this thesis, we provide new directions for estimation in an underdetermined system, both for a class of parameter estimation problems and also for the problem of sparse recovery in compressive sensing. There are two main contributions of the thesis: design of new sampling and statistical estimation algorithms for array processing, and development of improved guarantees for sparse reconstruction by introducing a statistical framework to the recovery problem.

We consider underdetermined observation models in array processing where the number of unknown sources simultaneously received by the array can be considerably larger than the number of physical sensors. We study new sparse spatial sampling schemes (array geometries) as well as propose new recovery algorithms that can exploit priors on the unknown signals and unambiguously identify all the sources. The proposed sampling structure is generic enough to be extended to multiple dimensions as well as to exploit different kinds of priors in the model such as correlation, higher order moments, etc.

Recognizing the role of correlation priors and suitable sampling schemes for underdetermined estimation in array processing, we introduce a correlation aware framework for recovering sparse support in compressive sensing. We show that it is possible to strictly increase the size of the recoverable sparse support using this framework provided the measurement matrix is suitably designed. The proposed nested and coprime arrays are shown to be appropriate candidates in this regard. We also provide new guarantees for convex and greedy formulations of the support recovery problem and demonstrate that it is possible to strictly improve upon existing guarantees.

This new paradigm of underdetermined estimation that explicitly establishes the fundamental interplay between sampling, statistical priors and the underlying sparsity, leads to exciting future research directions in a variety of application areas, and also gives rise to new questions that can lead to stand-alone theoretical results in their own right.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies in turbulence often focus on two flow conditions, both of which occur frequently in real-world flows and are sought-after for their value in advancing turbulence theory. These are the high Reynolds number regime and the effect of wall surface roughness. In this dissertation, a Large-Eddy Simulation (LES) recreates both conditions over a wide range of Reynolds numbers Reτ = O(102)-O(108) and accounts for roughness by locally modeling the statistical effects of near-wall anisotropic fine scales in a thin layer immediately above the rough surface. A subgrid, roughness-corrected wall model is introduced to dynamically transmit this modeled information from the wall to the outer LES, which uses a stretched-vortex subgrid-scale model operating in the bulk of the flow. Of primary interest is the Reynolds number and roughness dependence of these flows in terms of first and second order statistics. The LES is first applied to a fully turbulent uniformly-smooth/rough channel flow to capture the flow dynamics over smooth, transitionally rough and fully rough regimes. Results include a Moody-like diagram for the wall averaged friction factor, believed to be the first of its kind obtained from LES. Confirmation is found for experimentally observed logarithmic behavior in the normalized stream-wise turbulent intensities. Tight logarithmic collapse, scaled on the wall friction velocity, is found for smooth-wall flows when Reτ ≥ O(106) and in fully rough cases. Since the wall model operates locally and dynamically, the framework is used to investigate non-uniform roughness distribution cases in a channel, where the flow adjustments to sudden surface changes are investigated. Recovery of mean quantities and turbulent statistics after transitions are discussed qualitatively and quantitatively at various roughness and Reynolds number levels. The internal boundary layer, which is defined as the border between the flow affected by the new surface condition and the unaffected part, is computed, and a collapse of the profiles on a length scale containing the logarithm of friction Reynolds number is presented. Finally, we turn to the possibility of expanding the present framework to accommodate more general geometries. As a first step, the whole LES framework is modified for use in the curvilinear geometry of a fully-developed turbulent pipe flow, with implementation carried out in a spectral element solver capable of handling complex wall profiles. The friction factors have shown favorable agreement with the superpipe data, and the LES estimates of the Karman constant and additive constant of the log-law closely match values obtained from experiment.