172 resultados para Spatial Rainfall
Resumo:
Interannual variation of Indian summer monsoon rainfall (ISMR) is linked to El Nino-Southern oscillation (ENSO) as well as the Equatorial Indian Ocean oscillation (EQUINOO) with the link with the seasonal value of the ENSO index being stronger than that with the EQUINOO index. We show that the variation of a composite index determined through bivariate analysis, explains 54% of ISMR variance, suggesting a strong dependence of the skill of monsoon prediction on the skill of prediction of ENSO and EQUINOO. We explored the possibility of prediction of the Indian rainfall during the summer monsoon season on the basis of prior values of the indices. We find that such predictions are possible for July-September rainfall on the basis of June indices and for August-September rainfall based on the July indices. This will be a useful input for second and later stage forecasts made after the commencement of the monsoon season.
Resumo:
Multi-year observations from the network of ground-based observatories (ARFINET), established under the project `Aerosol Radiative Forcing over India' (ARFI) of Indian Space Research Organization and space-borne lidar `Cloud Aerosol Lidar with Orthogonal Polarization' (CALIOP) along with simulations from the chemical transport model `Goddard Chemistry Aerosol Radiation and Transport' (GOCART), are used to characterize the vertical distribution of atmospheric aerosols over the Indian landmass and its spatial structure. While the vertical distribution of aerosol extinction showed higher values close to the surface followed by a gradual decrease at increasing altitudes, a strong meridional increase is observed in the vertical spread of aerosols across the Indian region in all seasons. It emerges that the strong thermal convections cause deepening of the atmospheric boundary layer, which although reduces the aerosol concentration at lower altitudes, enhances the concentration at higher elevations by pumping up more aerosols from below and also helping the lofted particles to reach higher levels in the atmosphere. Aerosol depolarization ratios derived from CALIPSO as well as the GOCART simulations indicate the dominance of mineral dust aerosols during spring and summer and anthropogenic aerosols in winter. During summer monsoon, though heavy rainfall associated with the Indian monsoon removes large amounts of aerosols, the prevailing southwesterly winds advect more marine aerosols over to landmass (from the adjoining oceans) leading to increase in aerosol loading at lower altitudes than in spring. During spring and summer months, aerosol loading is found to be significant, even at altitudes as high as 4 km, and this is proposed to have significant impacts on the regional climate systems such as Indian monsoon. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Aerosol loading over the South Asian region has the potential to affect the monsoon rainfall, Himalayan glaciers and regional air-quality, with implications for the billions in this region. While field campaigns and network observations provide primary data, they tend to be location/season specific. Numerical models are useful to regionalize such location-specific data. Studies have shown that numerical models underestimate the aerosol scenario over the Indian region, mainly due to shortcomings related to meteorology and the emission inventories used. In this context, we have evaluated the performance of two such chemistry-transport models: WRF-Chem and SPRINTARS over an India-centric domain. The models differ in many aspects including physical domain, horizontal resolution, meteorological forcing and so on etc. Despite these differences, both the models simulated similar spatial patterns of Black Carbon (BC) mass concentration, (with a spatial correlation of 0.9 with each other), and a reasonable estimates of its concentration, though both of them under-estimated vis-a-vis the observations. While the emissions are lower (higher) in SPRINTARS (WRF-Chem), overestimation of wind parameters in WRF-Chem caused the concentration to be similar in both models. Additionally, we quantified the under-estimations of anthropogenic BC emissions in the inventories used these two models and three other widely used emission inventories. Our analysis indicates that all these emission inventories underestimate the emissions of BC over India by a factor that ranges from 1.5 to 2.9. We have also studied the model simulations of aerosol optical depth over the Indian region. The models differ significantly in simulations of AOD, with WRF-Chem having a better agreement with satellite observations of AOD as far as the spatial pattern is concerned. It is important to note that in addition to BC, dust can also contribute significantly to AOD. The models differ in simulations of the spatial pattern of mineral dust over the Indian region. We find that both meteorological forcing and emission formulation contribute to these differences. Since AOD is column integrated parameter, description of vertical profiles in both models, especially since elevated aerosol layers are often observed over Indian region, could be also a contributing factor. Additionally, differences in the prescription of the optical properties of BC between the models appear to affect the AOD simulations. We also compared simulation of sea-salt concentration in the two models and found that WRF-Chem underestimated its concentration vis-a-vis SPRINTARS. The differences in near-surface oceanic wind speeds appear to be the main source of this difference. In-spite of these differences, we note that there are similarities in their simulation of spatial patterns of various aerosol species (with each other and with observations) and hence models could be valuable tools for aerosol-related studies over the Indian region. Better estimation of emission inventories could improve aerosol-related simulations. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We begin by providing observational evidence that the probability of encountering very high and very low annual tropical rainfall has increased significantly in the most recent decade (1998-present) compared with the preceding warming era (1979-1997). These changes over land and ocean are spatially coherent and comprise a rearrangement of very wet regions and a systematic expansion of dry zones. While the increased likelihood of extremes is consistent with a higher average temperature during the pause (compared with 1979-1997), it is important to note that the periods considered are also characterized by a transition from a relatively warm to a cold phase of the El Nino Southern Oscillation (ENSO). To probe the relation between contrasting phases of ENSO and extremes in accumulation further, a similar comparison is performed between 1960 and 1978 (another extended cold phase of ENSO) and the aforementioned warming era. Though limited by land-only observations, in this cold-to-warm transition, remarkably, a near-exact reversal of extremes is noted both statistically and geographically. This is despite the average temperature being higher in 1979-1997 compared with 1960-1978. Taking this evidence together, we propose that there is a fundamental mode of natural variability, involving the waxing and waning of extremes in accumulation of global tropical rainfall with different phases of ENSO.
Resumo:
Generalized spatial modulation (GSM) uses N antenna elements but fewer radio frequency (RF) chains (R) at the transmitter. In GSM, apart from conveying information bits through R modulation symbols, information bits are also conveyed through the indices of the R active transmit antennas. In this letter, we derive lower and upper bounds on the the capacity of a (N, M, R)-GSM MIMO system, where M is the number of receive antennas. Further, we propose a computationally efficient GSM encoding method and a message passing-based low-complexity detection algorithm suited for large-scale GSM-MIMO systems.
Resumo:
Achieving control on the formation of different organization states of magnetic nanoparticles is crucial to harness their organization dependent physical properties in desired ways. In this study, three organization states of iron oxide nanoparticles (gamma-Fe2O3), defining as (i) assembly (ii) network aggregate and (iii) cluster, have been developed by simply changing the solvent evaporation conditions. All three systems have retained the same phase and polydispersity of primary particles. Magnetic measurements show that the partial alignment of the easy axes of the particles in the network system due to the stacking aggregation morphology can result in significant enhancement of the coercivity and remanence values, while the opposite is obtained for the cluster system due to the random orientation of easy axes. Partial alignment in the aggregate system also results in noticeable non -monotonic field dependence of ZFC peak temperature (TpeaB). The lowest value of the blocking temperature (TB) for the cluster system is related to the lowering of the effective anisotropy due to the strongest demagnetizing effect. FC (Field cooled) memory effect was observed to be decreasing with the increasing strength of dipolar interaction of organization states. Therefore, the stacking aggregation and the cluster formation are two interesting ways of magnetic nanoparticles organization for modulating collective magnetic properties significantly, which can have renewed application potentials from recording devices to biomedicine. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
We have addressed the question of whether the massive deficit of 42% in rainfall over the Indian region in June 2014 can be attributed primarily to the El Nino. We have shown that the variation of convection over the Northern part of the Tropical West Pacific (NWTP: 120-150E, 20-30N) plays a major role in determining the all-India rainfall in June with deficit (excess) in rainfall associated with enhancement (suppression) of convection over NWTP. In June 2014, the outgoing long wave radiation (OLR) anomaly over this region was unfavourable, whereas in June 2015, the OLR anomaly over NWTP was favourable and the all-India rainfall was 16% higher than the long-term average. We find that during El Nino, when the convection over the equatorial central Pacific intensifies, there is a high propensity for intensification of convection over NWTP. Thus, El Nino appears to have an impact on the rainfall over the Indian region via its impact on the convection over the West Pacific, particularly over NWTP. This occurred in June 2014, which suggests that the large deficit in June 2014, could be primarily attributed to the El Nino acting via intensification of convection over NWTP.