276 resultados para Spacially separated polarons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sandalwood is an economically important aromatic tree belonging to the family Santalaceae. The trees are used mainly for their fragrant heartwood and oil that have immense potential for foreign exchange. Very little information is available on the genetic diversity in this species. Hence studies were initiated and genetic diversity estimated using RAPD markers in 51 genotypes of Santalum album procured from different geographcial regions of India and three exotic lines of S. spicatum from Australia. Eleven selected Operon primers (10mer) generated a total of 156 consistent and unambiguous amplification products ranging from 200bp to 4kb. Rare and genotype specific bands were identified which could be effectively used to distinguish the genotypes. Genetic relationships within the genotypes were evaluated by generating a dissimilarity matrix based on Ward's method (Squared Euclidean distance). The phenetic dendrogram and the Principal Component Analysis generated, separated the 51 Indian genotypes from the three Australian lines. The cluster analysis indicated that sandalwood germplasm within India constitutes a broad genetic base with values of genetic dissimilarity ranging from 15 to 91 %. A core collection of 21 selected individuals revealed the same diversity of the entire population. The results show that RAPD analysis is an efficient marker technology for estimating genetic diversity and relatedness, thereby enabling the formulation of appropriate strategies for conservation, germplasm management, and selection of diverse parents for sandalwood improvement programmes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flow in a square cavity is studied by solving the full Navier–Stokes and energy equations numerically, employing finite-difference techniques. Solutions are obtained over a wide range of Reynolds numbers from 0 to 50000. The solutions show that only at very high Reynolds numbers (Re [gt-or-equal, slanted] 30000) does the flow in the cavity completely correspond to that assumed by Batchelor's model for separated flows. The flow and thermal fields at such high Reynolds numbers clearly exhibit a boundary-layer character. For the first time, it is demonstrated that the downstream secondary eddy grows and decays in a manner similar to the upstream one. The upstream and downstream secondary eddies remain completely viscous throughout the range of Reynolds numbers of their existence. It is suggested that the behaviour of the secondary eddies may be characteristic of internal separated flows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent results and data suggest that high magnetic fields in neutron stars (NS) strongly affect the characteristics (radius, mass) of the star. Such stars are even separated into a class known as magnetars, for which the surface magnetic field is greater than 10(14) G. In this work we discuss the effect of such a high magnetic field on the phase transition of a NS to a quark star (QS). We study the effect of magnetic field on the transition from NS to QS including the magnetic-field effect in the equation of state (EoS). The inclusion of the magnetic field increases the range of baryon number densities for which the flow velocities of the matter in the respective phase are finite. The magnetic field helps in initiation of the conversion process. The velocity of the conversion front, however, decreases due to the presence of the magnetic field, as the presence of the magnetic field reduces the effective pressure (P). The magnetic field of the star is decreased by the conversion process, and the resultant QS has lower magnetic field than the initial NS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The three dimensional structure of a protein provides major insights into its function. Protein structure comparison has implications in functional and evolutionary studies. A structural alphabet (SA) is a library of local protein structure prototypes that can abstract every part of protein main chain conformation. Protein Blocks (PBS) is a widely used SA, composed of 16 prototypes, each representing a pentapeptide backbone conformation defined in terms of dihedral angles. Through this description, the 3D structural information can be translated into a 1D sequence of PBs. In a previous study, we have used this approach to compare protein structures encoded in terms of PBs. A classical sequence alignment procedure based on dynamic programming was used, with a dedicated PB Substitution Matrix (SM). PB-based pairwise structural alignment method gave an excellent performance, when compared to other established methods for mining. In this study, we have (i) refined the SMs and (ii) improved the Protein Block Alignment methodology (named as iPBA). The SM was normalized in regards to sequence and structural similarity. Alignment of protein structures often involves similar structural regions separated by dissimilar stretches. A dynamic programming algorithm that weighs these local similar stretches has been designed. Amino acid substitutions scores were also coupled linearly with the PB substitutions. iPBA improves (i) the mining efficiency rate by 6.8% and (ii) more than 82% of the alignments have a better quality. A higher efficiency in aligning multi-domain proteins could be also demonstrated. The quality of alignment is better than DALI and MUSTANG in 81.3% of the cases. Thus our study has resulted in an impressive improvement in the quality of protein structural alignment. (C) 2011 Elsevier Masson SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the incubation period for the onset of sphalerite to wurtzite transformation in isolated ZnS nanoparticles 2 to 7 nm in size was determined via the in situ isothermal annealing of as-synthesized sphalerite nanoparticles in a transmission electron microscope (TEM). Nanoparticles sitting on the TEM grid were well separated from each other in order to minimize particle sintering during the annealing operation. The phase transformation onset was observed at 300 degrees C, 350 degrees C, and 400 degrees C after 90, 10, and 4 min, respectively. These time-temperature data for the phase transformation onset were then used to calculate the activation energy for the nucleation of the wurtzite phase in 2 to 7 nm sphalerite particles. The activation energy determined was 24 Kcal/mol. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3622625]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The focus of this work is the evaluation and analysis of the state of dispersion of functionalized multiwall carbon nanotubes (CNTs), within different morphologies formed, in a model LCST blend (poly[(alpha-methylstyrene)-co-(acrylonitrile)]/poly(methyl-methacryla te), P alpha MSAN/PMMA). Blend compositions that are expected to yield droplet-matrix (85/15 P alpha MSAN/PMMA and 15/85 P alpha MSAN/PMMA, wt/wt) and co-continuous morphologies (60/40 P alpha MSAN/PMMA, wt/wt) upon phase separation have been combined with two types of CNTs; carboxylic acid functionalized (CNTCOOH) and polyethylene modified (CNTPE) up to 2 wt%. Thermally induced phase separation in the blends has been studied in-situ by rheology and dielectric (conductivity) spectroscopy in terms of morphological evolution and CNT percolation. The state of dispersion of CNTs has been evaluated by transmission electron microscopy. The experimental results indicate that the final blend morphology and the surface functionalization of CNT are the main factors that govern percolation. In presence of either of the CNTs, 60/40 P alpha MSAN/PMMA blends yield a droplet-matrix morphology rather than co-continuous and do not show any percolation. On the other hand, both 85/15 P alpha MSAN/PMMA and 15/85 P alpha MSAN/PMMA blends containing CNTPEs show percolation in the rheological and electrical properties. Interestingly, the conductivity spectroscopy measurements demonstrate that the 15/85 P alpha MSAN/PMMA blends with CNTPEs that show insulating properties at room temperature for the miscible blends reveal highly conducting properties in the phase separated blends (melt state) as a result of phase separation. By quenching this morphology, the conductivity can be retained in the blends even in the solid state. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of intrusion detection and location identification in the presence of clutter is considered for a hexagonal sensor-node geometry. It is noted that in any practical application,for a given fixed intruder or clutter location, only a small number of neighboring sensor nodes will register a significant reading. Thus sensing may be regarded as a local phenomenon and performance is strongly dependent on the local geometry of the sensor nodes. We focus on the case when the sensor nodes form a hexagonal lattice. The optimality of the hexagonal lattice with respect to density of packing and covering and largeness of the kissing number suggest that this is the best possible arrangement from a sensor network viewpoint. The results presented here are clearly relevant when the particular sensing application permits a deterministic placement of sensors. The results also serve as a performance benchmark for the case of a random deployment of sensors. A novel feature of our analysis of the hexagonal sensor grid is a signal-space viewpoint which sheds light on achievable performance.Under this viewpoint, the problem of intruder detection is reduced to one of determining in a distributed manner, the optimal decision boundary that separates the signal spaces SI and SC associated to intruder and clutter respectively. Given the difficulty of implementing the optimal detector, we present a low-complexity distributive algorithm under which the surfaces SI and SC are separated by a wellchosen hyperplane. The algorithm is designed to be efficient in terms of communication cost by minimizing the expected number of bits transmitted by a sensor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase transformation behaviour of amorphous electroless Ni-B coating with a targeted composition of Ni-6wt% B is characterized in conjunction with microstructural development and hardness. Microscopic observations of the as-deposited coating display a novel microstructure which is already phase separated at multiple length scales. Spherical colonies of similar to 5 mu m consist of 2-3 mu m nodular regions which are surrounded by similar to 2-3 mu m region that contains fine bands ranging from 10 to 70 nm in width. The appearance of three crystalline phases in this binary system at different stages of heat treatment and the concomitant variation in hardness are shown to arise from nanoscale fluctuations in the as-deposited boron content from 4 to 8 wt%. High temperature annealing reveals continuous crystallization up to 430 degrees C, overlapping with the domain of B loss due to diffusion into the substrate. The implications of such a microstructure for optimal heat treatment procedures are discussed. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecules exhibiting a thermotropic liquid-crystalline property have acquired significant importance due to their sensitivity to external stimuli such as temperature, mechanical forces, and electric and magnetic fields. As a result, several novel mesogens have been synthesized by the introduction of various functional groups in the vicinity of the aromatic core as well as in the side chains and their properties have been studied. In the present study, we report three-ring mesogens with hydroxyl groups at one terminal. These mesogens were synthesized by a multistep route, and structural characterization was accomplished by spectral techniques. The mesophase properties were studied by hot-stage optical polarizing microscopy, differential scanning calorimetry, and small-angle X-ray scattering. An enantiotropic nematic phase was noticed for lower homologues, while an additional smectic C phase was found for higher homologues. Solid-state high-resolution natural abundance (13)C NMR studies of a typical mesogen in the solid phase and in the mesophases have been carried out. The (13)C NMR spectrum of the mesogen in the smectic C and nematic phases indicated spontaneous alignment of the molecule in the magnetic field. By utilizing the two-dimensional separated local field (SLF) NMR experiment known as SAMPI4, (13)C-(1)H dipolar couplings have been obtained, which were utilized to determine the orientational order parameters of the mesogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A significant amount of research on the thermodynamic properties of molten alloys is undertaken for obtaining insights into their structure . The partial and integral molar enthalpies, entropies and volumes of mixing provide some general information on the nature and strength of atomic bonds and the distribution of atoms. However, until recently it has been difficult to derive specific quantitative information because the excess entropy of mixing contains configurational , vibrational , electronic , and sometimes magnetic contributions which cannot be easily separated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inception of cavitation in the steady flow of liquids around bodies is seen to depend upon the real fluid flow around the bodies as well as the supply of nucleating cavitation sources—or nuclei—within the fluid. A primary distinction is made between bodies having a laminar separation or not having a laminar separation. The former group is relatively insensitive to the nuclei concentration whereas the latter is much more sensitive. Except for the case of fully separated wake flows and for gaseous cavitation by diffusion the cavitation inception index tends always to be less than the magnitude of the minimum pressure coefficient and only approaches that value for high Reynolds numbers in flows well supplied with nuclei.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bulk Ge(15)Te(85 - x)Sn(x) and Ge(17)Te(83 - x)Sn(x) glasses, are found to exhibit memory type electrical switching. The switching voltages (V(t)) and thermal stability of Ge(15)Te(85 - x)Sn(x) and Ge(17)Te(83 - x)Sn(x) glasses are found to decrease with Sn content. The composition dependence of v, has been understood on the basis of the decrease in the OFF state resistance and thermal stability of these glasses with tin addition. X-ray diffraction studies reveal that no elemental Sn or Sn compounds with Te or Ge are present in thermally crystallized Ge-Te-Sn samples. This indicates that Sn atoms do not interact with the host matrix and form a phase separated network of its own, which remains in the parent glass matrix as an inclusion. Consequently, there is no enhancement of network connectivity and rigidity. The thickness dependence of switching voltages of Ge(15)Te(85 - x)Sn(x) and Ge(17)Te(83 - x)Sn(x) glasses is found to be linear, in agreement with the memory switching behavior shown by these glasses. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate a system of fermions on a two-dimensional optical square lattice in the strongly repulsive coupling regime. In this case, the interactions can be controlled by laser intensity as well as by Feshbach resonance. We compare the energetics of states with resonating valence bond d-wave superfluidity, antiferromagnetic long-range order, and a homogeneous state with coexistence of superfluidity and antiferromagnetism. Using a variational formalism, we show that the energy density of a hole e(hole)(x) has a minimum at doping x = x(c) that signals phase separation between the antiferromagnetic and d-wave paired superfluid phases. The energy of the phase-separated ground state is, however, found to be very close to that of a homogeneous state with coexisting antiferromagnetic and superfluid orders. We explore the dependence of the energy on the interaction strength and on the three-site hopping terms and compare with the nearest-neighbor hopping t-J model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Precision, sophistication and economic factors in many areas of scientific research that demand very high magnitude of compute power is the order of the day. Thus advance research in the area of high performance computing is getting inevitable. The basic principle of sharing and collaborative work by geographically separated computers is known by several names such as metacomputing, scalable computing, cluster computing, internet computing and this has today metamorphosed into a new term known as grid computing. This paper gives an overview of grid computing and compares various grid architectures. We show the role that patterns can play in architecting complex systems, and provide a very pragmatic reference to a set of well-engineered patterns that the practicing developer can apply to crafting his or her own specific applications. We are not aware of pattern-oriented approach being applied to develop and deploy a grid. There are many grid frameworks that are built or are in the process of being functional. All these grids differ in some functionality or the other, though the basic principle over which the grids are built is the same. Despite this there are no standard requirements listed for building a grid. The grid being a very complex system, it is mandatory to have a standard Software Architecture Specification (SAS). We attempt to develop the same for use by any grid user or developer. Specifically, we analyze the grid using an object oriented approach and presenting the architecture using UML. This paper will propose the usage of patterns at all levels (analysis. design and architectural) of the grid development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neutron time-of-flight spectroscopy has been employed to study the crystal-field interaction in the pyrochlore titanate Ho2Ti2O7. The crystal-field parameters and corresponding energy-level scheme have been determined from a profile fit to the observed neutron spectra. The ground state is a well separated Eg doublet with a strong Ising-like anisotropy, which can give rise to frustration in the pyrochlore lattice. Using the crystal-field parameters determined for the Ho compound as an estimate of the crystal-field potential in other pyrochlore magnets, we also find the Ising type behavior for Dy. In contrast, the almost planar anisotropy found for Er and Yb prevents frustration, because of the continuous range of possible spin orientations in this case.