272 resultados para RF stacking
Resumo:
The effect of various parameters on the velocity of the induced jet produced by a dielectric barrier discharge (DBD) plasma was studied experimentally. The glow discharge was created at atmospheric conditions by using a high voltage RF power supply. Flow visualization and photographic studies of the plasma were performed. The parametric investigation of the characteristics of the plasma show that the width of the plasma in the uniform glow discharge regime was an indication of the velocity induced under stagnant conditions. It was observed that the spanwise overlap of the two electrodes, dielectric thickness, voltage and frequency of the applied voltage are the major parameters that govern the velocity and the extent of plasma in the streamwise direction.
Resumo:
Experimental study and optimization of Plasma Ac- tuators for Flow control in subsonic regime PRADEEP MOISE, JOSEPH MATHEW, KARTIK VENKATRAMAN, JOY THOMAS, Indian Institute of Science, FLOW CONTROL TEAM | The induced jet produced by a dielectric barrier discharge (DBD) setup is capable of preventing °ow separation on airfoils at high angles of attack. The ef-fect of various parameters on the velocity of this induced jet was studied experimentally. The glow discharge was created at atmospheric con-ditions by using a high voltage RF power supply. Flow visualization,photographic studies of the plasma, and hot-wire measurements on the induced jet were performed. The parametric investigation of the charac- teristics of the plasma show that the width of the plasma in the uniform glow discharge regime was an indication of the velocity induced. It was observed that the spanwise and streamwise overlap of the two electrodes,dielectric thickness, voltage and frequency of the applied voltage are the major parameters that govern the velocity and the extent of plasma.e®ect of the optimized con¯guration on the performance characteristics of an airfoil was studied experimentally.
Resumo:
Receive antenna selection (AS) provides many benefits of multiple-antenna systems at drastically reduced hardware costs. In it, the receiver connects a dynamically selected subset of N available antennas to the L available RF chains. Due to the nature of AS, the channel estimates at different antennas, which are required to determine the best subset for data reception, are obtained from different transmissions of the pilot sequence. Consequently, they are outdated by different amounts in a time-varying channel. We show that a linear weighting of the estimates is necessary and optimum for the subset selection process, where the weights are related to the temporal correlation of the channel variations. When L is not an integer divisor of N , we highlight a new issue of ``training voids'', in which the last pilot transmission is not fully exploited by the receiver. We then present new ``void-filling'' methods that exploit these voids and greatly improve the performance of AS. The optimal subset selection rules with void-filling, in which different antennas turn out to have different numbers of estimates, are also explicitly characterized. Closed-form equations for the symbol error probability with and without void-filling are also developed.
Resumo:
LixCoOy films with x < 1 and y > 2 have been prepared by radio-frequency (rf) sputtering from high temperature (HT) LiCoO2 targets. Their structures have been examined with high resolution electron microscopy. Conductivities have been studied between 77 and 400 K. The electrochemical behaviour of film electrodes have been investigated with Li/LiClO4-PC/LixCoOy cells. The annealed films consist of nanocrystalline domains with amorphous boundaries. Electrical conductivities appear to arise from variable-range hopping (VRH) of holes. The films form good electrodes with operating potentials between 2.7 and 3.8 V. The observations have been discussed on the basis of a tentative and heuristic molecular orbital based energy band diagram. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
The removal of native oxide from Si (1 1 1) surfaces was investigated by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectra (SIMS) depth profiles. Two different oxide removal methods, performed under ultrahigh-vacuum (UHV) conditions, were carried out and compared. The first cleaning method is thermal desorption of oxide at 900 degrees C. The second method is the deposition of metallic gallium followed by redesorption. A significant decrease in oxygen was achieved by thermal desorption at 900 degrees C under UHV conditions. By applying a subsequent Ga deposition/redesorption, a further reduction in oxygen could be achieved. We examine the merits of an alternative oxide desorption method via conversion of the stable SiO(2) surface oxide into a volatile Ca(2)O oxide by a supply of Ga metals. Furthermore, ultra thin films of pure silicon nitride buffer layer were grown on a Si (1 1 1) surface by exposing the surface to radio-frequency (RF) nitrogen plasma followed by GaN growth. The SIMS depth profile shows that the oxygen impurity can be reduced at GaN/beta-Si(3)N(4)/Si interfaces by applying a subsequent Ga deposition/redesorption. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
MEMS resonators have potential applications in the areas of RF-MEMS, clock oscillators, ultrasound transducers, etc. The important characteristics of a resonator are its resonant frequency and Q-factor (a measure of damping). Usually large damping in macro structures makes it difficult to excite and measure their higher modes. In contrast, MEMS resonators seem amenable to excitation in higher modes. In this paper, 28 modes of vibration of an electrothermal actuator are experimentally captured–perhaps the highest number of modes experimentally captured so far. We verify these modes with FEM simulations and report that all the measured frequencies are within 5% of theoretically predicted values.
Resumo:
SrTiO3:Pr3+,Al3+ phosphor samples with varying ratios of Sr/Ti/Al were prepared by the gel-carbonate method and the mechanism of enhancement of the red photoluminescence intensity therein was investigated. The photoluminescence (PL) spectra of SrTiO3:Pr3+ show both D-1(2) --> H-3(4) and P-3(0) --> H-3(4) emission in the red and blue spectral regions, respectively, with comparable intensity. The emission intensity of D-1(2) --> H-3(4) is drastically enhanced by the incorporation of Al3+ and excess Ti4+ in the compositional range Sr(Ti,Al-y)(O3+3y/2):Pr3+ (0.2 less than or equal to y less than or equal to 0.4) and SrTi1+xAlyO3+z:Pr3+ (0.2 less than or equal to x less than or equal to 0.5; 0.05 less than or equal to y less than or equal to 0.1; z = 2x + 3y/2) with the complete disappearance of the blue band. This cannot be explained by the simple point defect model as the EPR studies do not show any evidence for the presence of electron or hole centers. TEM investigations show the presence of exsolved nanophases of SrAl12O19 and/or TiO2 in the grain boundary region as well as grain interiors as lamellae which, in turn, form the solid-state defects, namely, dislocation networks, stacking faults and crystallographic shear planes whereby the framework of corner shared TiO6 octehedra changes over to edge-sharing TiO5-AlO5 strands as indicated from the Al-27 MAS NMR studies. The presence of transitional nanophases and the associated defects modify the excitation-emission processes by way of formation of electronic sub-levels at 3.40 and 4.43 eV, leading to magnetic-dipole related red emission with enhanced intensity. This is evidenced by the fact that SrAl12O19:Pr3+,Ti4+ shows bright red emission whereas SrAl12O19:Pr3+ does not show red photoluminescence.
Resumo:
We determine the optimal allocation of power between the analog and digital sections of an RF receiver while meeting the BER constraint. Unlike conventional RF receiver designs, we treat the SNR at the output of the analog front end (SNRAD) as a design parameter rather than a specification to arrive at this optimal allocation. We first determine the relationship of the SNRAD to the resolution and operating frequency of the digital section. We then use power models for the analog and digital sections to solve the power minimization problem. As an example, we consider a 802.15.4 compliant low-IF receiver operating at 2.4 GHz in 0.13 μm technology with 1.2 V power supply. We find that the overall receiver power is minimized by having the analog front end provide an SNR of 1.3dB and the ADC and the digital section operate at 1-bit resolution with 18MHz sampling frequency while achieving a power dissipation of 7mW.
Resumo:
The IEEE 802.16/WiMAX standard has fully embraced multi-antenna technology and can, thus, deliver robust and high transmission rates and higher system capacity. Nevertheless,due to its inherent form-factor constraints and cost concerns, a WiMAX mobile station (MS) should preferably contain fewer radio frequency (RF) chains than antenna elements.This is because RF chains are often substantially more expensive than antenna elements. Thus, antenna selection, wherein a subset of antennas is dynamically selected to connect to the limited RF chains for transceiving, is a highly appealing performance enhancement technique for multi-antenna WiMAX terminals.In this paper, a novel antenna selection protocol tailored for next-generation IEEE 802.16 mobile stations is proposed. As demonstrated by the extensive OPNET simulations, the proposed protocol delivers a significant performance improvement over conventional 802.16 terminals that lack the antenna selection capability. Moreover, the new protocol leverages the existing signaling methods defined in 802.16, thereby incurring a negligible signaling overhead and requiring only diminutive modifications of the standard. To the best of our knowledge, this paper represents the first effort to support antenna selection capability in IEEE 802.16 mobile stations.
Resumo:
The specific side-chain orientations of the phenyl group in the polypeptides poly-S-benzyl-L-cysteine, poly-S-carbobenzoxy-L-cysteine and poly-O-carbobenzoxy-L-serine in the beta-structure have been studied by spectral measurements in solutions. All the three polypeptides exhibit aromatic CD bands, indicating the asymmetric placement of the side-chain phenyl rings when the polypeptide backbone takes up the antiparallel beta-structure. Supporting evidence for this is derived from n.m.r. spectra of the polypeptides, which show upfield shift of the phenyl protons due to the stacking of the aromatic rings. Molecular model building studies reveal the stacking of alternate phenyl groups along the polypeptide chain.
Resumo:
This work intends to demonstrate the importance of geometrically nonlinear crosssectional analysis of certain composite beam-based four-bar mechanisms in predicting system dynamic characteristics. All component bars of the mechanism are made of fiber reinforced laminates and have thin rectangular cross-sections. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. They are linked to each other by means of revolute joints. We restrict ourselves to linear materials with small strains within each elastic body (beam). Each component of the mechanism is modeled as a beam based on geometrically nonlinear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and nonlinear 1-D analyses along the four beam reference curves. For thin rectangular cross-sections considered here, the 2-D cross-sectional nonlinearity is overwhelming. This can be perceived from the fact that such sections constitute a limiting case between thin-walled open and closed sections, thus inviting the nonlinear phenomena observed in both. The strong elastic couplings of anisotropic composite laminates complicate the model further. However, a powerful mathematical tool called the Variational Asymptotic Method (VAM) not only enables such a dimensional reduction, but also provides asymptotically correct analytical solutions to the nonlinear cross-sectional analysis. Such closed-form solutions are used here in conjunction with numerical techniques for the rest of the problem to predict multi-body dynamic responses, more quickly and accurately than would otherwise be possible. The analysis methodology can be viewed as a three-step procedure: First, the cross-sectional properties of each bar of the mechanism is determined analytically based on an asymptotic procedure, starting from Classical Laminated Shell Theory (CLST) and taking advantage of its thin strip geometry. Second, the dynamic response of the nonlinear, flexible fourbar mechanism is simulated by treating each bar as a 1-D beam, discretized using finite elements, and employing energy-preserving and -decaying time integration schemes for unconditional stability. Finally, local 3-D deformations and stresses in the entire system are recovered, based on the 1-D responses predicted in the previous step. With the model, tools and procedure in place, we shall attempt to identify and investigate a few problems where the cross-sectional nonlinearities are significant. This will be carried out by varying stacking sequences and material properties, and speculating on the dominating diagonal and coupling terms in the closed-form nonlinear beam stiffness matrix. Numerical examples will be presented and results from this analysis will be compared with those available in the literature, for linear cross-sectional analysis and isotropic materials as special cases.
Resumo:
Antenna selection allows multiple-antenna systems to achieve most of their promised diversity gain, while keeping the number of RF chains and, thus, cost/complexity low. In this paper we investigate antenna selection for fourth-generation OFDMA- based cellular communications systems, in particular, 3GPP LTE (long-term evolution) systems. We propose a training method for antenna selection that is especially suitable for OFDMA. By means of simulation, we evaluate the SNR-gain that can be achieved with our design. We find that the performance depends on the bandwidth assigned to each user, the scheduling method (round-robin or frequency-domain scheduling), and the Doppler spread. Furthermore, the signal-to-noise ratio of the training sequence plays a critical role. Typical SNR gains are around 2 dB, with larger values obtainable in certain circumstances.
Resumo:
A low-power frequency multiplication technique, developed for ZigBee (IEEE 802.15.4) like applications is presented. We have provided an estimate for the power consumption for a given output voltage swing using our technique. The advantages and disadvantages which determine the application areas of the technique are discussed. The issues related to design, layout and process variation are also addressed. Finally, a design is presented for operation in 2.405-2.485-GHz band of ZigBee receiver. SpectreRF simulations show 30% improvement in efficiency for our circuit with regard to conversion of DC bias current to output amplitude, against a LC-VCO. To establish the low-power credentials, we have compared our circuit with an existing technique; our circuit performs better with just 1/3 of total current from supply, and uses one inductor as against three in the latter case. A test chip was implemented in UMC 0.13-mum RF process with spiral on-chip inductors and MIM (metal-insulator-metal) capacitor option.
Resumo:
In this paper the use of probability theory in reliability based optimum design of reinforced gravity retaining wall is described. The formulation for computing system reliability index is presented. A parametric study is conducted using advanced first order second moment method (AFOSM) developed by Hasofer-Lind and Rackwitz-Fiessler (HL-RF) to asses the effect of uncertainties in design parameters on the probability of failure of reinforced gravity retaining wall. Totally 8 modes of failure are considered, viz overturning, sliding, eccentricity, bearing capacity failure, shear and moment failure in the toe slab and heel slab. The analysis is performed by treating back fill soil properties, foundation soil properties, geometric properties of wall, reinforcement properties and concrete properties as random variables. These results are used to investigate optimum wall proportions for different coefficients of variation of φ (5% and 10%) and targeting system reliability index (βt) in the range of 3 – 3.2.
Resumo:
Benzocyclobutene (BCB) has been proposed as a board level dielectric for advanced system-on-package (SOP) module primarily due to its attractive low-loss (for RF application) and thin film (for high density wiring) properties. Realization of embedded resistors on low loss benzocyclobutene (dielectric loss ~0.0008 at > 40 GHz) has been explored in this study. Two approaches, viz, foil transfer and electroless plating have been attempted for deposition of thin film resistors on benzocyclobutene (BCB). Ni-P alloys were plated using conventional electroless plating, and NiCr and NiCrAlSi foils were used for the foil transfer process. This paper reports NiP and NiWP electroless plated embedded resistors on BCB dielectric for the first time in the literature