310 resultados para Newtonian fluids
Resumo:
Solitary waves and cnoidal waves have been found in an adiabatic compressible atmosphere which, under ambient conditions, has winds, and is isothermal. The theory is illustrated with an example for which the background wind is linearly increasing. It is found that the number of possible critical speeds of the flow depends crucially on whether the Richardson number is greater or less than one‐fourth.
Resumo:
An integrodifferential formulation for the equation governing the Alfvén waves in inhomogeneous magnetic fields is shown to be similar to the polyvibrating equation of Mangeron. Exploiting this similarity, a time‐dependent solution for smooth initial conditions is constructed. The important feature of this solution is that it separates the parts giving the Alfvén wave oscillations of each layer of plasma and the interaction of these oscillations representing the phase mixing.
Resumo:
Experimental studies on the measurement of pressure fields in the region of separating and reattaching flows behind several two-dimensional fore-bodies and one axisymmetric body are reported. In particular, extensive measurements of mean pressure, surface pressure fluctuation, and pressure fluctuation within the flow were made for a series of two-dimensional fore-body shapes consisting of triangular nose with varying included angle. The measurements from different bodies are compared and one of the important findings is that the maximum values of rms pressure fluctuation levels in the shear layer approaching reattachment are almost equal to the maximum value of the surface fluctuation levels.
Resumo:
This paper may be considered as a sequel to one of our earlier works pertaining to the development of an upwind algorithm for meshless solvers. While the earlier work dealt with the development of an inviscid solution procedure, the present work focuses on its extension to viscous flows. A robust viscous discretization strategy is chosen based on positivity of a discrete Laplacian. This work projects meshless solver as a viable cartesian grid methodology. The point distribution required for the meshless solver is obtained from a hybrid cartesian gridding strategy. Particularly considering the importance of an hybrid cartesian mesh for RANS computations, the difficulties encountered in a conventional least squares based discretization strategy are highlighted. In this context, importance of discretization strategies which exploit the local structure in the grid is presented, along with a suitable point sorting strategy. Of particular interest is the proposed discretization strategies (both inviscid and viscous) within the structured grid block; a rotated update for the inviscid part and a Green-Gauss procedure based positive update for the viscous part. Both these procedures conveniently avoid the ill-conditioning associated with a conventional least squares procedure in the critical region of structured grid block. The robustness and accuracy of such a strategy is demonstrated on a number of standard test cases including a case of a multi-element airfoil. The computational efficiency of the proposed meshless solver is also demonstrated. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a numerical simulation of the well-documented, fluid-controlled Kabbal and Ponmudi type gneiss-chamockite transformations in southern India using a free energy minimization method. The computations have considered all the major solid phases and important fluid species in the rock - C-O-H and rock - C-O-H-N systems. Appropriate activity-composition relations for the solid solutions and equations of state for the fluids have been included in order to evaluate the mineral-fluid equilibria attending the incipient chamockite development in the gneisses. The C-O-H fluid speciation pattern in both the Kabbal and Ponmudi type systems indicates that CO2 and H2O make up the bulk of the fluid phase with CO, CH4, H-2 and O2 as minor constituents. In the graphite-buffered Ponmudi-system, the abundance of CO, CH4 and H-2 is orders of magnitude higher than that in the graphite-free Kabbal system. Simulation with C-O-H-N fluids of varying composition demonstrates the complementary role of CO2 and N2 as rather inert dilutants of H2O in the fluid phase. The simulation, carried out on available whole-rock data, has demonstrated the dependence of the transformation X(H2O) on P,T, and phase and chemical composition of the precursor gneiss.
Resumo:
The Kelvin–Helmholtz instability has been investigated for the magnetopause boundary‐layer region by the linearized method. The plasma in magnetosheath and magnetopause is assumed to be semi‐infinitely extended homogeneous, nondissipative, and incompressible. It is observed that, if one relation of two plasma speeds on the two sides of the magnetopause, wave number, and boundary‐layer thickness exceeds a certain threshold, the instability sets in. This new analytically sufficient criterion for excitation of instability in the three‐layer plasma flow generalizes the corresponding Chandrasekhar’s instability criterion for two‐layer plasma flow. The known results have been recovered and modified, the new results have been discovered. It is proved that the velocity threshold for the onset of instability is low when the magnitude of the magnetosheath and boundary‐layer region magnetic field and the angle between them are small. Also the threshold depends on the direction of plasma flow. The following results are observed numerically. The growth of the instability is sensitive to the magnetic field direction in the magnetosheath. A slight variation in the magnetic field direction in the second region can substantially change the relative velocity threshold for instability. When the ratio of the density of the second and third layer (magnetosphere) increases or that of the first and third layer decreases, the threshold decreases. Apart from this a necessary criterion for instability is obtained for a particular case.
Resumo:
We report here the results of a series of careful experiments in turbulent channel flow, using various configurations of blade manipulators suggested as optimal in earlier boundary layer studies. The mass flow in the channel could be held constant to better than 0.1%, and the uncertainties in pressure loss measurements were less than 0.1 mm of water; it was therefore possible to make accurate estimates of the global effects of blade manipulation of a kind that are difficult in boundary layer flows. The flow was fully developed at the station where the blades were mounted, and always relaxed to the same state sufficiently far downstream. It is found that, for a given mass flow, the pressure drop to any station downstream is always higher in the manipulated than in the unmanipulated flow, demonstrating that none of the blade manipulators tried reduces net duct losses. However the net increase in duct losses is less than the drag of the blade even in laminar flow, showing that there is a net reduction in the total skin friction drag experienced by the duct, but this relief is only about 20% of the manipulator drag at most.
Resumo:
The use of binary fluid systems in thermally driven vapour absorption and mechanically driven vapour compression refrigeration and heatpump cycles has provided an impetus for obtaining experimental date on caloric properties of such fluid mixtures. However, direct measurements of these properties are somewhat scarce in spite of the calorimetric techniques described in the literature being quite adequate. Most of the design data are derived through calculations using theoretical models and vapour-liquid equilibrium data. This article addresses the choice of working fluids and the current status on the data availability vis-a-vis engineering applications. Particular emphasis is on organic working fluid pairs.
Resumo:
The channel volatiles in cordierites of the Precambrian high-grade metapelites from southern and eastern Karnataka northern Tamil Nadu and southern Kerala were analyzed in an attempt to use them as metamorphic fluid fugacity indicators. Infrared powder absorption spectra, used to characterize the channel volatiles, showed that all the 21 analyzed cordierites have H2O and CO2 as the channel volatiles, indicating the predominantly H2O-CO2 composition of the metamorphic fluids. The H2O fraction in the metamorphic fluid was computed using a published thermodynamic method in conjunction with gravimetrically determined cordierite channel H2O content, available P - T estimates and an appropriate equation of state for the H2O - CO2 fluids. The IR data and these calculated X(H2O) values indicate an overall correlation between the variation in the relative proportion of H2O and CO2 in the fluids and the metamorphic grade. The average computed X(H2O) values are: 0.78 for the amphibolite facies eastern Karnataka pelites, 0.36 for the amphibolite facies southern Karnataka pelites, 0.19 for the southern Karnataka transitional zone rocks and 0.13 for the northern Tamil Nadu granulites. Consistently low X(H2O) values, at about 0.2, were obtained for the orthopyroxene-bearing assemblages.
Resumo:
A mixed boundary-valued problem associated with the diffusion equation, that involves the physical problem of cooling of an infinite slab in a two-fluid medium, is solved completely by using the Wiener-Hopf technique. An analytical solution is derived for the temperature distribution at the quench fronts being created by two different layers of cold fluids having different cooling abilities moving on the upper surface of the slab at constant speed. Simple expressions are derived for the values of the sputtering temperatures of the slab at the points of contact with the respective layers, assuming one layer of the fluid to be of finite extent and the other of infinite extent. The main problem is solved through a three-part Wiener - Hopf problem of a special type, and the numerical results under certain special circumstances are obtained and presented in the form of a table.
Resumo:
The development of a radioreceptor assay (RRA) that can measure serum LH in a variety of species and CG in sera and urine of pregnant women and monkeys is reported. Using sheep luteal membrane as the receptor source and I-125-labelled hLH/hCG as the tracer, dose-response (displacement) curves were obtained using hLH or hCG as standard. The addition of LH-free serum (200 mul per tube) had no affect on the standard displacement curve. The assay is simple, requires less than 90 min to complete and provides reproducible results. The sensitivity of the assay was 0.6 ng hLH per tube and the intra- and interassay variations were 9.6 and 9.8, respectively. Sera obtained from male and female bonnet monkeys (Macaca radiata) and monkey pituitary extract showed parallelism to the standard curve. The concentrations of LH measured correlated with the physiological status of the animals. Sera of rats, rabbits, hamsters, guinea-pigs, sheep and humans showed parallelism to the hLH standard curve indicating the viability of the RRA to measure serum LH of different species. Since the receptors recognize LH and CG, detection of pregnancy in monkeys and women was possible using this assay. The sensitivity of the assay for hCG was 8.7 miu per tube. This RRA could be a convenient alternative to the Leydig cell bioassay for obtaining the LH bioactivity profile of sera and biological fluids.
Resumo:
The impact of moisture anomalies on the circulation of the south-west Indian monsoon has been studied with a general circulation model. Newtonian relaxation is adopted to subject the model atmosphere under sustained moisture anomalies. The impact of negative anomalies of moisture was seen as a divergent circulation anomaly, while the positive anomaly was a stronger convergent anomaly. Although the humidity fields display a resilient behaviour, and relax back to normal patterns 1–2 days after the forcing terms in humidity are withdrawn, the circulation anomalies created by the moisture variation keeps growing. A feedback between positive moisture anomalies and low level convergence exists, which is terminated in the absence of external forcings.
Resumo:
We conduct a numerical study of the dynamic behavior of a dense hard-sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free-energy functional of the Ramakrishnan-Yussouff form. We find that the system exhibits glassy behavior as evidenced through a stretched exponential decay and a two-stage relaxation of the density correlation function. The characteristic times grow with increasing density according to the Vogel-Fulcher law. The wave-number dependence of the kinetics is extensively explored. The connection of our results with experiment, mode-coupling theory, and molecular-dynamics results is discussed.
Resumo:
In this work, we present a new monolithic strategy for solving fluid-structure interaction problems involving incompressible fluids, within the context of the finite element method. This strategy, similar to the continuum dynamics, conserves certain properties, and thus provides a rational basis for the design of the time-stepping strategy; detailed proofs of the conservation of these properties are provided. The proposed algorithm works with displacement and velocity variables for the structure and fluid, respectively, and introduces no new variables to enforce velocity or traction continuity. Any existing structural dynamics algorithm can be used without change in the proposed method. Use of the exact tangent stiffness matrix ensures that the algorithm converges quadratically within each time step. An analytical solution is presented for one of the benchmark problems used in the literature, namely, the piston problem. A number of benchmark problems including problems involving free surfaces such as sloshing and the breaking dam problem are used to demonstrate the good performance of the proposed method. Copyright (C) 2010 John Wiley & Sons, Ltd.