199 resultados para Lipschitzian bounds


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We revisit the constraints on the parameter space of the Minimal Supersymmetric Standard Model (MSSM), from charge and color breaking minima in the light of information on the Higgs from the LHC so far. We study the behavior of the scalar potential keeping two light sfermion fields along with the Higgs in the pMSSM framework and analyze the stability of the vacuum. We find that for lightest stops a parts per thousand(2) 1 TeV and small mu a parts per thousand(2) 500 GeV, the absolute stability of the potential can be attained only for . The bounds become stronger for larger values of the mu parameter. Note that this is approximately the value of Xt which maximizes the Higgs mass. Our bounds on the low scale MSSM parameters are more stringent than those reported earlier in literature. We reanalyze the stau sector as well, keeping both staus. We study the connections between the observed Higgs rates and vacuum (meta)stability. We show how a precision study of the ratio of signal strengths, (mu (gamma gamma) /mu (ZZ) ) can shed further light.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A robust suboptimal reentry guidance scheme is presented for a reusable launch vehicle using the recently developed, computationally efficient model predictive static programming. The formulation uses the nonlinear vehicle dynamics with a spherical and rotating Earth, hard constraints for desired terminal conditions, and an innovative cost function having several components with associated weighting factors that can account for path and control constraints in a soft constraint manner, thereby leading to smooth solutions of the guidance parameters. The proposed guidance essentially shapes the trajectory of the vehicle by computing the necessary angle of attack and bank angle that the vehicle should execute. The path constraints are the structural load constraint, thermal load constraint, bounds on the angle of attack, and bounds on the bank angle. In addition, the terminal constraints include the three-dimensional position and velocity vector components at the end of the reentry. Whereas the angle-of-attack command is generated directly, the bank angle command is generated by first generating the required heading angle history and then using it in a dynamic inversion loop considering the heading angle dynamics. Such a two-loop synthesis of bank angle leads to better management of the vehicle trajectory and avoids mathematical complexity as well. Moreover, all bank angle maneuvers have been confined to the middle of the trajectory and the vehicle ends the reentry segment with near-zero bank angle, which is quite desirable. It has also been demonstrated that the proposed guidance has sufficient robustness for state perturbations as well as parametric uncertainties in the model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let P be a set of n points in R-d. A point x is said to be a centerpoint of P if x is contained in every convex object that contains more than dn/d+1 points of P. We call a point x a strong centerpoint for a family of objects C if x is an element of P is contained in every object C is an element of C that contains more than a constant fraction of points of P. A strong centerpoint does not exist even for halfspaces in R-2. We prove that a strong centerpoint exists for axis-parallel boxes in Rd and give exact bounds. We then extend this to small strong epsilon-nets in the plane. Let epsilon(S)(i) represent the smallest real number in 0, 1] such that there exists an epsilon(S)(i)-net of size i with respect to S. We prove upper and lower bounds for epsilon(S)(i) where S is the family of axis-parallel rectangles, halfspaces and disks. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rainbow connection number, rc(G), of a connected graph G is the minimum number of colors needed to color its edges so that every pair of vertices is connected by at least one path in which no two edges are colored the same (note that the coloring need not be proper). In this paper we study the rainbow connection number with respect to three important graph product operations (namely the Cartesian product, the lexicographic product and the strong product) and the operation of taking the power of a graph. In this direction, we show that if G is a graph obtained by applying any of the operations mentioned above on non-trivial graphs, then rc(G) a parts per thousand currency sign 2r(G) + c, where r(G) denotes the radius of G and . In general the rainbow connection number of a bridgeless graph can be as high as the square of its radius 1]. This is an attempt to identify some graph classes which have rainbow connection number very close to the obvious lower bound of diameter (and thus the radius). The bounds reported are tight up to additive constants. The proofs are constructive and hence yield polynomial time -factor approximation algorithms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we study the inverse mode shape problem for an Euler-Bernoulli beam, using an analytical approach. The mass and stiffness variations are determined for a beam, having various boundary conditions, which has a prescribed polynomial second mode shape with an internal node. It is found that physically feasible rectangular cross-section beams which satisfy the inverse problem exist for a variety of boundary conditions. The effect of the location of the internal node on the mass and stiffness variations and on the deflection of the beam is studied. The derived functions are used to verify the p-version finite element code, for the cantilever boundary condition. The paper also presents the bounds on the location of the internal node, for a valid mass and stiffness variation, for any given boundary condition. The derived property variations, corresponding to a given mode shape and boundary condition, also provides a simple closed-form solution for a class of non-uniform Euler-Bernoulli beams. These closed-form solutions can also be used to check optimization algorithms proposed for modal tailoring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We address the problem of two-dimensional (2-D) phase retrieval from magnitude of the Fourier spectrum. We consider 2-D signals that are characterized by first-order difference equations, which have a parametric representation in the Fourier domain. We show that, under appropriate stability conditions, such signals can be reconstructed uniquely from the Fourier transform magnitude. We formulate the phase retrieval problem as one of computing the parameters that uniquely determine the signal. We show that the problem can be solved by employing the annihilating filter method, particularly for the case when the parameters are distinct. For the more general case of the repeating parameters, the annihilating filter method is not applicable. We circumvent the problem by employing the algebraically coupled matrix pencil (ACMP) method. In the noiseless measurement setup, exact phase retrieval is possible. We also establish a link between the proposed analysis and 2-D cepstrum. In the noisy case, we derive Cramer-Rao lower bounds (CRLBs) on the estimates of the parameters and present Monte Carlo performance analysis as a function of the noise level. Comparisons with state-of-the-art techniques in terms of signal reconstruction accuracy show that the proposed technique outperforms the Fienup and relaxed averaged alternating reflections (RAAR) algorithms in the presence of noise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motivated by the discrepancies noted recently between the theoretical calculations of the electromagnetic omega pi form factor and certain experimental data, we investigate this form factor using analyticity and unitarity in a framework known as the method of unitarity bounds. We use a QCD correlator computed on the spacelike axis by operator product expansion and perturbative QCD as input, and exploit unitarity and the positivity of its spectral function, including the two-pion contribution that can be reliably calculated using high-precision data on the pion form factor. From this information, we derive upper and lower bounds on the modulus of the omega pi form factor in the elastic region. The results provide a significant check on those obtained with standard dispersion relations, confirming the existence of a disagreement with experimental data in the region around 0.6 GeV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We update the constraints on two-Higgs-doublet models (2HDMs) focusing on the parameter space relevant to explain the present muon g - 2 anomaly, Delta alpha(mu), in four different types of models, type I, II, ``lepton specific'' (or X) and ``flipped'' (or Y). We show that the strong constraints provided by the electroweak precision data on the mass of the pseudoscalar Higgs, whose contribution may account for Delta alpha(mu), are evaded in regions where the charged scalar is degenerate with the heavy neutral one and the mixing angles alpha and beta satisfy the Standard Model limit beta - alpha approximate to pi/2. We combine theoretical constraints from vacuum stability and perturbativity with direct and indirect bounds arising from collider and B physics. Possible future constraints from the electron g - 2 are also considered. If the 126 GeV resonance discovered at the LHC is interpreted as the light CP-even Higgs boson of the 2HDM, we find that only models of type X can satisfy all the considered theoretical and experimental constraints.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of delay-constrained, energy-efficient broadcast in cooperative wireless networks is NP-complete. While centralised setting allows some heuristic solutions, designing heuristics in distributed implementation poses significant challenges. This is more so in wireless sensor networks (WSNs) where nodes are deployed randomly and topology changes dynamically due to node failure/join and environment conditions. This paper demonstrates that careful design of network infrastructure can achieve guaranteed delay bounds and energy-efficiency, and even meet quality of service requirements during broadcast. The paper makes three prime contributions. First, we present an optimal lower bound on energy consumption for broadcast that is tighter than what has been previously proposed. Next, iSteiner, a lightweight, distributed and deterministic algorithm for creation of network infrastructure is discussed. iPercolate is the algorithm that exploits this structure to cooperatively broadcast information with guaranteed delivery and delay bounds, while allowing real-time traffic to pass undisturbed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we study codes with locality that can recover from two erasures via a sequence of two local, parity-check computations. By a local parity-check computation, we mean recovery via a single parity-check equation associated with small Hamming weight. Earlier approaches considered recovery in parallel; the sequential approach allows us to potentially construct codes with improved minimum distance. These codes, which we refer to as locally 2-reconstructible codes, are a natural generalization along one direction, of codes with all-symbol locality introduced by Gopalan et al, in which recovery from a single erasure is considered. By studying the generalized Hamming weights of the dual code, we derive upper bounds on the minimum distance of locally 2-reconstructible codes and provide constructions for a family of codes based on Turan graphs, that are optimal with respect to this bound. The minimum distance bound derived here is universal in the sense that no code which permits all-symbol local recovery from 2 erasures can have larger minimum distance regardless of approach adopted. Our approach also leads to a new bound on the minimum distance of codes with all-symbol locality for the single-erasure case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

India needs to significantly increase its electricity consumption levels, in a sustainable manner, if it has to ensure rapid economic development, a goal that remains the most potent tool for delivering adaptation capacity to its poor who will suffer the worst consequences of climate change. Resource/supply constraints faced by conventional energy sources, techno-economic constraints faced by renewable energy sources, and the bounds imposed by climate change on fossil fuel use are likely to undermine India's quest for having a robust electricity system that can effectively contribute to achieving accelerated, sustainable and inclusive economic growth. One possible way out could be transitioning into a sustainable electricity system, which is a trade-off solution having taken into account the economic, social and environmental concerns. As a first step toward understanding this transition, we contribute an indicator based hierarchical multidimensional framework as an analytical tool for sustainability assessment of electricity systems, and validate it for India's national electricity system. We evaluate Indian electricity system using this framework by comparing it with a hypothetical benchmark sustainable electrical system, which was created using best indicator values realized across national electricity systems in the world. This framework, we believe, can be used to examine the social, economic and environmental implications of the current Indian electricity system as well as setting targets for future development. The analysis with the indicator framework provides a deeper understanding of the system, identify and quantify the prevailing sustainability gaps and generate specific targets for interventions. We use this framework to compute national electricity system sustainability index (NESSI) for India. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A rainbow matching of an edge-colored graph G is a matching in which no two edges have the same color. There have been several studies regarding the maximum size of a rainbow matching in a properly edge-colored graph G in terms of its minimum degree 3(G). Wang (2011) asked whether there exists a function f such that a properly edge-colored graph G with at least f (delta(G)) vertices is guaranteed to contain a rainbow matching of size delta(G). This was answered in the affirmative later: the best currently known function Lo and Tan (2014) is f(k) = 4k - 4, for k >= 4 and f (k) = 4k - 3, for k <= 3. Afterwards, the research was focused on finding lower bounds for the size of maximum rainbow matchings in properly edge-colored graphs with fewer than 4 delta(G) - 4 vertices. Strong edge-coloring of a graph G is a restriction of proper edge-coloring where every color class is required to be an induced matching, instead of just being a matching. In this paper, we give lower bounds for the size of a maximum rainbow matching in a strongly edge-colored graph Gin terms of delta(G). We show that for a strongly edge-colored graph G, if |V(G)| >= 2 |3 delta(G)/4|, then G has a rainbow matching of size |3 delta(G)/4|, and if |V(G)| < 2 |3 delta(G)/4|, then G has a rainbow matching of size |V(G)|/2] In addition, we prove that if G is a strongly edge-colored graph that is triangle-free, then it contains a rainbow matching of size at least delta(G). (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consider N points in R-d and M local coordinate systems that are related through unknown rigid transforms. For each point, we are given (possibly noisy) measurements of its local coordinates in some of the coordinate systems. Alternatively, for each coordinate system, we observe the coordinates of a subset of the points. The problem of estimating the global coordinates of the N points (up to a rigid transform) from such measurements comes up in distributed approaches to molecular conformation and sensor network localization, and also in computer vision and graphics. The least-squares formulation of this problem, although nonconvex, has a well-known closed-form solution when M = 2 (based on the singular value decomposition (SVD)). However, no closed-form solution is known for M >= 3. In this paper, we demonstrate how the least-squares formulation can be relaxed into a convex program, namely, a semidefinite program (SDP). By setting up connections between the uniqueness of this SDP and results from rigidity theory, we prove conditions for exact and stable recovery for the SDP relaxation. In particular, we prove that the SDP relaxation can guarantee recovery under more adversarial conditions compared to earlier proposed spectral relaxations, and we derive error bounds for the registration error incurred by the SDP relaxation. We also present results of numerical experiments on simulated data to confirm the theoretical findings. We empirically demonstrate that (a) unlike the spectral relaxation, the relaxation gap is mostly zero for the SDP (i.e., we are able to solve the original nonconvex least-squares problem) up to a certain noise threshold, and (b) the SDP performs significantly better than spectral and manifold-optimization methods, particularly at large noise levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyse the hVV (V = W, Z) vertex in a model independent way using Vh production. To that end, we consider possible corrections to the Standard Model Higgs Lagrangian, in the form of higher dimensional operators which parametrise the effects of new physics. In our analysis, we pay special attention to linear observables that can be used to probe CP violation in the same. By considering the associated production of a Higgs boson with a vector boson (W or Z), we use jet substructure methods to define angular observables which are sensitive to new physics effects, including an asymmetry which is linearly sensitive to the presence of CP odd effects. We demonstrate how to use these observables to place bounds on the presence of higher dimensional operators, and quantify these statements using a log likelihood analysis. Our approach allows one to probe separately the hZZ and hWW vertices, involving arbitrary combinations of BSM operators, at the Large Hadron Collider.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rechargeable batteries based on Li and Na ions have been growing leaps and bounds since their inception in the 1970s. They enjoy significant attention from both the fundamental science point of view and practical applications ranging from portable electronics to hybrid vehicles and grid storage. The steady demand for building better batteries calls for discovery, optimisation and implementation of novel positive insertion (cathode) materials. In this quest, chemists have tried to unravel many future cathode materials by taking into consideration their eco-friendly synthesis, material/process economy, high energy density, safety, easy handling and sustainability. Interestingly, sulfate-based cathodes offer a good combination of sustainable syntheses and high energy density owing to their high-voltage operation, stemming from electronegative SO42- units. This review delivers a sneak peak at the recent advances in the discovery and development of sulfate-containing cathode materials by focusing on their synthesis, crystal structure and electrochemical performance. Several family of cathodes are independently discussed. They are 1) fluorosulfates AMSO(4)F], 2) bihydrated fluorosulfates AMSO(4)F2H(2)O], 3) hydroxysulfate AMSO(4)OH], 4) bisulfates A(2)M(SO4)(2)], 5) hydrated bisulfates A(2)M(SO4)(2)nH(2)O], 6) oxysulfates Fe-2(SO4)(2)O] and 7) polysulfates A(2)M(2)(SO4)(3)]. A comparative study of these sulfate-based cathodes has been provided to offer an outlook on the future development of high-voltage polyanionic cathode materials for next-generation batteries.