227 resultados para Irregular Behaviour
Resumo:
Creep properties of QE22 magnesium based alloy and composites reinforced with 20 volume percent of short-fibers - Maftech (R), Saffil (R) or Supertech (R), were evaluated using the impression creep test. In the impression creep test, a load is applied with the help of a cylindrical tungsten carbide indenter of 1 mm diameter. This has advantages over conventional creep testing in terms of small specimen size requirement and simple machining. Depth of impression is recorded with time and steady state strain rate is obtained from the slope of the secondary strain (depth of impression divided by indenter diameter) vs. time plot. The results are compared with the creep obtained from conventional creep performed in tension on the same materials earlier. Microstructural examination of the plastically deformed regions is carried out to explain creep behaviour of these composites.
Resumo:
Thin films of ZrO2 have been deposited by ALD on Si(100) and SIMOX using two different metalorganic complexes of Zr as precursors. These films are characterized by X-ray diffraction, transmission and scanning electron microscopies, infrared spectroscopy, and electrical measurements. These show that amorphous ZrO2 films of high dielectric quality may be grown on Si(100) starting about 400degreesC. As the growth temperature is raised, the films become crystalline, the phase formed and the microstructure depending on precursor molecular structure. The phase of ZrO2 formed depends also on the relative duration of the precursor and oxygen pulses. XPS and IR spectroscopy show that films grown at low temperatures contain chemically unbound carbon, its extent depending on the precursor. C-V measurements show that films grown on Si(100) have low interface state density, low leakage current, a hysteresis width of only 10-250 mV and a dielectric constant of similar to16-25.
Resumo:
We report here the electrical and magnetic properties of Al70Pd30−xMnx quasicrystals (x=9 and 11), from resistivity and point contact spectroscopy measurements. Electrical resistivity shows a resistivity maximum for both of these compositions. The positive TCR at lower temperature is attributed to spin–orbit scattering. For x=11, we observe an upturn in the resistivity below 20 K, which follows a lnT dependence indicating Kondo-like behaviour. In the point contact spectroscopy studies we observe two regimes showing a V2 dependence at low bias voltages (for V<10 meV) crossing over to the V0.5 dependence at higher voltages. This is attributed to the signature of a pseudo-gap in the density of states at zero bias. We suggest that this V2 dependence can also arise due to magnetic scattering effects, which are signatures of the Kondo-like behaviour.
Resumo:
A study is made to bring out the effect of alloying with Cr, Ti or Mn on the creep behaviour of Fe3Al. Impression creep experiments have been carried out in the DO3 phase field. In all the alloys, power law creep behaviour is observed in the stress range covered. The stress exponent for steady state creep rate and the activation energy for creep indicate that the creep rate is controlled by the dislocation climb process. Among the alloying elements studied, addition of Ti is most effective in improving the creep resistance.
Resumo:
The near-critical behaviour in complex fluids, comprising electrolyte solutions, polymer solutions and amphiphilic systems, reveals a marked departure from the 3-D Ising behaviour. This departure manifests itself either in terms of a crossover from Ising to mean-field (or classical) critical behaviour, when moving away from a given critical point (Tc), or by the persistence of only mean-field region in the surprisingly close vicinity of Tc. The ilo,non-Ising features of the osmotic compressibility (chi(T,p)) in solutions of electrolytes, that exhibit orle or many liquid-liquid transitions, will be presented. The underlying cause of the breakdown of the anticipated 3-D Ising behaviour in aqueous electrolyte solutions is traced to the structuring induced by the electrolytes. New evidence constituting, measurements of small-angle X-ray scattering (SAXS) and the excess molar volume, is advanced to support the thesis of the close relationship, between the structuring and the deviation from the 3-D Ising critical behaviour in aqueous electrolyte solutions.
Resumo:
Understanding the volume change behaviour of expansive soils/clays becomes a dire necessity to obtain engineering solutions to structures founded on these soils. Behaviour of expansive soils does not conform to the natural behaviour of fine grained soils. Most of the cases, the permissible heave/settlement forms the design criteria. The paper discusses the basic properties, the role of effective stress concept, basic mechanism in controlling the volume change behaviour, the role of double layer repulsion and its validity and certain basic considerations of footing resting on an expansive soil with respect to heave or settlement and the soil reinforcement as a possible engineering solution.
Resumo:
In -situ soils in gee-material spectrum might arise due to sedimentation or could be non-sedimentary residual formations. The inherent nature and diversity of geological processes involved in the soil formation stage itself are responsible for a wide variability in the in-situ state of the soil. In this paper the possibility of analyses to arrive at engineering parameters of residual soils with varied degrees of residual or acquired cementation by the use of physical and in-situ parameters normally determined in routine investigations, are examined. An Intrinsic State Line,(ISL), with reference to an intrinsic state parameter (e/e(L)) and its variation with effective stress for reconstituted clays has been developed for residual tropical soils of non-sedimentary origin. In relation to the Intrinsic State Line (ISL), the undisturbed state, e, the potential parameter, e(L), along with the overburden pressure data has been analyzed to identify the dominance of cementation or stress history or both in controlling the compressibility and strength behaviour of natural residual soil. The location of yield stress point in relation to the ISL, pre-, and post- yield stress, compression indices along the e- log sigma(v) path provide a simple means to the analysis of the compressibility characteristics of cemented soils for analysis.
Resumo:
The effect of scaling (1 μm to 0.09 μm) on the non-quasi-static (NQS) behaviour of the MOSFET has been studied using process and device simulation. It is shown that under fixed gate (Vgs) and drain (Vds) bias voltages, the NQS transition frequency (fNQS) scales as 1/Leff rather than 1/L2eff due to the velocity saturation effect. However, under the practical scaling guidelines, considering the scaling of supply voltage as well, fNQS shows a turn around effect at the sub 100 nm regime. The relation between unity gain frequency (ft) and fNQS is also evaluated and it is shown that ft and fNQS have similar trends with scaling.
Resumo:
The composites consisting of amorphous matrix reinforced with crystalline dendrites offer extraordinary combinations of strength, stiffness, and toughness and can be processed in bulk. Hence, they have been receiving intense research interest, with a primary focus to study their mechanical properties. In this paper, the temperature and strain rate effects on the uniaxial compression response of a tailored bulk metallic glass (BMG) composite has been investigated. Experimental results show that at temperatures ranging between ambient to 500 K and at all strain rates; the onset of plastic deformation in the composite is controlled by that in the dendrites. As the temperature is increased to the glass transition temperature of the matrix and beyond, flow in the amorphous matrix occurs readily and hence it dictates the composite's response. The role of the constituent phases in controlling the deformation mechanism of the composite has been verified by assessing the strain rate sensitivity and the activation volume for deformation. The composite is rate sensitive at room temperature with values of strain rate sensitivity and activation volume being similar to that of the dendrites. At test temperatures near to the glass transition temperature, the composite however becomes rate-insensitive corresponding to that of the matrix phase. At low strain rates, serrated flow akin to that of dynamic strain ageing in crystalline alloys was observed and the serration magnitude decreases with increasing temperature. Initiation of the shear bands at the dendrite/matrix interface and propagation of them through the matrix ligaments until their arrest at another interface is the responsible mechanism for this. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Chips produced by turning a commercial grade pure magnesium billet were consolidated by solid state recycling technique of cold compaction followed by hot extrusion. The cold compacted billets were extruded at four different temperatures: 250 degrees C, 300 degrees C, 350 degrees C and 400 degrees C. For the purpose of comparison, cast magnesium (pure) billets were extruded under similar conditions. Extruded products were characterized for damping properties. Damping capacity and dynamic modulus was measured as a function of time and temperature at a fixed frequency of 5 Hz 10 to 14% increase in damping capacity was observed in chip consolidated products compared to reference material. Microstructural changes after the temperature sweep tests were examined. Chip boundaries present in consolidated products were observed to suppress grain coarsening which otherwise was significant in reference material. The present work is significant from the viewpoint of recycling of machined chips and development of sustainable manufacturing processes. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In recent times the demand of ultra-low carbon steel (ULCS) with improved mechanical properties such as good ductility and good workability has been increased as it is used to produce cold-rolled steel sheets for automobiles. For producing ULCS efficiently, it is necessary to improve the productivity of the vacuum degassers such as RH, DH and tank degasser. Recently, it has been claimed that using a new process, called REDA (revolutionary degassing activator), one can achieve the carbon content below 10 ppm in less time. As such, REDA process has not been studied thoroughly in terms of fluid flow and mass transfer which is a necessary precursor to understand and design this process. Therefore, momentum and mass transfer of the process has been studied by solving momentum and species balance equations along with k-epsilon turbulent model in two-dimension (2D) for REDA process. Similarly, computational fluid dynamic studies have been made in 2D for tank and RH degassers to compare them with REDA process. Computational results have been validated with published experimental and theoretical data. It is found that REDA process is the most efficient among all these processes in terms of mixing efficiency. Fluid flow phenomena have been studied in details for REDA process by varying gas flow rate, depth of immersed snorkel in the steel, diameter of the snorkel and change in vacuum pressure. It is found that design of snorkel affects the melt circulation in the bath significantly.
Resumo:
The evolution of microstructure and texture in Hexagonal Close Pack commercially pure titanium has been studied in torsion in a strain rate regime of 0.001 to 1 s(-1). Free end torsion tests carried out on titanium rods indicated higher stress levels at higher strain rate but negligible change in the strain-hardening behaviour. There was a decrease in the intra-granular misorientation while a negligible change in the amount of contraction and extension twins was observed with increase in strain rate. The deformed samples showed a C-1 fibre (c-axis is first rotated 90 degrees in shear direction and then +30 degrees in shear plane direction) at all the strain rates. With the increase in strain rate, there was an increase in the intensity of the C-1 fibre and it became more heterogeneous with a strong {11(2)over-bar6}< 2(8)over-bar)63 > component. In the absence of extensive twinning, pyramidal < c+a > slip system is attributed for the observed deformation texture. The present investigation, therefore, substantiates the theoretical prediction of increase in strength of texture with strain rate in torsion.
Resumo:
Owing to its favourable physical, chemical and rheological properties, densely compacted bentonite or bentonite-sand mix is considered as a suitable buffer material in deep geological repositories to store high level nuclear waste. Iodine-129 is one of the significant nuclides in the high level waste owing to its long half life and poor sorption onto most geologic media. Bentonite by virtue of negatively charged surface has negligible affinity to retain iodide ions. As organo-bentonites are known to retain iodide ions, the present study characterizes hexadecylpyridinium chloride (HDPyCl.H2O) treated bentonite from Barmer India (referred as HDPy+B) for physico-chemical properties, engineering properties and the iodide adsorption behavior of the organo clay. Batch experiments revealed that HDPy+ ions are largely retained (94 % retention) via cation exchange; the ion-exchange process neutralizes the negative surface charge and bridges clay particles leading to reduction in Atterberg limits, clay content and sediment volume. The organo clay retains iodide by Coulombic attraction (at primary sites) and anion exchange (at secondary sites). The free-energy change (Delta G (o) = -25.5 kJ/mol) value indicated that iodide retention by organo clay is favored physical adsorption process. Iodide adsorption capacity of organo clay decreased significantly (85-100 %) on dilution with 50-80 % bentonite. On the other hand, dilution of bentonite with 50 % organo clay caused 58 % reduction in swell potential and 21 % reduction in swell pressure.
Resumo:
In this communication, we report the synthesis and characterisation of a new luminescent liquid crystalline material, 4,6-bis (4-butoxyphenyl)-2-methoxynicotinonitrile (3). We have confirmed its structure by Fourier transform infrared and 1H nuclear magnetic resonance spectroscopy, elemental analysis and X-ray single crystal diffraction studies. The newly synthesised compound crystallises in a monoclinic system with the space group C2/c and its cell parameters are found to be a?=?25.181(4) angstrom, b?=?15.651(4)angstrom, c?=?12.703(19) angstrom, V?=?4880.4 (16) angstrom, Z?=?8. The results indicate that the presence of weak CH center dot center dot center dot O and CH center dot center dot center dot N hydrogen bonding as short-range intermolecular interactions are responsible for the formation of its crystal assembly. The measured torsion angle shows the existence of a distorted structure for the molecule wherein 4-butoxyphenylene ring substituent at the fourth position of the central pyridine ring forms a torsion angle chiC(4), C(3), C(10), C(19)] of 40.55 degrees. Its liquid crystalline behaviour was investigated with the aid of polarised optical microscopy and differential scanning calorimetry. The study reveals that the compound displays a broad nematic phase in the range of 78112 degrees C. Further, solution phase optical studies indicate that it is a blue light emitter in different non-polar and polar organic solvents at a concentration of 10-5M.
Resumo:
In this letter, we characterize the extrinsic information transfer (EXIT) behavior of a factor graph based message passing algorithm for detection in large multiple-input multiple-output (MIMO) systems with tens to hundreds of antennas. The EXIT curves of a joint detection-decoding receiver are obtained for low density parity check (LDPC) codes of given degree distributions. From the obtained EXIT curves, an optimization of the LDPC code degree profiles is carried out to design irregular LDPC codes matched to the large-MIMO channel and joint message passing receiver. With low complexity joint detection-decoding, these codes are shown to perform better than off-the-shelf irregular codes in the literature by about 1 to 1.5 dB at a coded BER of 10(-5) in 16 x 16, 64 x 64 and 256 x 256 MIMO systems.