263 resultados para GROWTH CHARTS
Resumo:
Transforming growth factor-beta s (TGF-beta 5) are multifunctional polypeptides, known to influence proliferation and differentiation of many cell types. TGF-beta 5 cDNA was cloned from Xenopus laevis and this isoform is unique to the amphibians. Here, we report the isolation and characterization of the TGF-beta 5 genomic clones to determine the structure of TGF-beta 5 gene. The gene consists of seven exons and all intron-exon boundaries follow the GT-AG consensus. The organization of TGF-beta 5 gene was identical to that of the mammalian TGF-beta isoforms, with the exception of position of the first splice junction. We determined the size of TGF-beta 5 gene to be approximately 20 kb.
Resumo:
KTP crystals have been grown below and above the ferroelectric transition temperature by flux method employing both spontaneous and top-seeded solution growth techniques. A slight morphological difference has been observed in these crystals when grown below and above the T-c. Ferroelectric domains are studied in these crystals by selective domain etching. It is seen that the ferroelectric domains in crystals grown spontaneously below T, show a complicated structure. A systematic investigation of the factors influencing domain structure has been carried out. Stress to some extent has been shown to affect the domain structure. Finally, a convenient way of converting the multidomain crystals into monodomain ones is described.
Resumo:
We show by numerical simulations that discretized versions of commonly studied continuum nonlinear growth equations (such as the Kardar-Parisi-Zhangequation and the Lai-Das Sarma-Villain equation) and related atomistic models of epitaxial growth have a generic instability in which isolated pillars (or grooves) on an otherwise flat interface grow in time when their height (or depth) exceeds a critical value. Depending on the details of the model, the instability found in the discretized version may or may not be present in the truly continuum growth equation, indicating that the behavior of discretized nonlinear growth equations may be very different from that of their continuum counterparts. This instability can be controlled either by the introduction of higher-order nonlinear terms with appropriate coefficients or by restricting the growth of pillars (or grooves) by other means. A number of such ''controlled instability'' models are studied by simulation. For appropriate choice of the parameters used for controlling the instability, these models exhibit intermittent behavior, characterized by multiexponent scaling of height fluctuations, over the time interval during which the instability is active. The behavior found in this regime is very similar to the ''turbulent'' behavior observed in recent simulations of several one- and two-dimensional atomistic models of epitaxial growth.
Resumo:
Transforming Growth Factors-beta (TGF-beta s) have been described in many vertebrate species of amphibians, aves and mammals. In this report we demonstrate the presence of TGF-beta 2 in pisces. TGF-beta 2 has been cloned from a fish, Cyrinus carpio, by RT-PCR using degenerate oligonucleotide primers. Sequence analysis of the amplified product and alignment of the deduced amino acid sequence with the human TGF-beta 2 amino acid sequence revealed 81% and 93% identity in the precursor and the mature regions, respectively. The northern blot analysis of fish heart RNA shows a major messenger RNA species of about 8.0 kb and two messages of very low abundance of about 5.0 kb and 4.0 kb. The identification of TGF-beta 2 isoform in Pisces and it's high degree of homology with the mammalian isoform suggests that among all TGF-beta isoforms, TGF-beta 2 is the most conserved during evolution. (C) 1997 Elsevier Science B.V.
Resumo:
Constant-stress tensile creep experiments on a superplastic 3-mol%-yttria-stabilized tetragonal zirconia composite with 20 wt% alumina revealed that cavities nucleate relatively early during tensile deformation. The number of cavities nucleated increases with increasing imposed stress. The cavities nucleate at triple points associated largely with an alumina grain, and then grow rapidly in a cracklike manner to attain dimensions on the order of the grain facet size. It is suggested that coarser-grained superplastic ceramics exhibit lower ductility due to the ease in formation of such grain boundary facet-cracks and their interlinkage to form a macroscopic crack of critical dimensions.
Resumo:
The presence of residual chlorine and organic matter govern the bacterial regrowth within a water distribution system. The bacterial growth model is essential to predict the spatial and temporal variation of all these substances throughout the system. The parameters governing the bacterial growth and biodegradable dissolved organic carbon (BDOC) utilization are difficult to determine by experimentation. In the present study, the estimation of these parameters is addressed by using simulation-optimization procedure. The optimal solution by genetic algorithm (GA) has indicated that the proper combination of parameter values are significant rather than correct individual values. The applicability of the model is illustrated using synthetic data generated by introducing noise in to the error-free measurements. The GA was found to be a potential tool in estimating the parameters controlling the bacterial growth and BDOC utilization. Further, the GA was also used for evaluating the sensitivity issues relating parameter values and objective function. It was observed that mu and k(cl) are more significant and dominating compared to the other parameters. But the magnitude of the parameters is also an important issue in deciding the dominance of a particular parameter. GA is found to be a useful tool in autocalibration of bacterial growth model and a sensitivity study of parameters.
Resumo:
A mathematical model describing the dynamics of mammalian cell growth in hollow fibre bioreactor operated in closed shell mode is developed. Mammalian cells are assumed to grow as an expanding biofilm in the extra-capillary space surrounding the fibre. Diffusion is assumed to be the dominant process in the radial direction while axial convection dominates in the lumen of the bioreactor. The transient simulation results show that steep gradients in the cell number are possible under the condition of substrate limitation. The precise conditions which result in nonuniform growth of cells along the length of the bioreactor are delineated. The effect of various operating conditions, such as substrate feed rate, length of the bioreactor and diffusivity of substrate in different regions of the bioreactor, on the bioreactor performance are evaluated in terms of time required to attain the steady-state. The rime of growth is introduced as a measure of effectiveness factor for the bioreactor and is found to be dependent on two parameters, a modified Peclet number and a Thiele modulus. Diffusion, reaction and/or convection control regimes are identified based on these two parameters. The model is further extended to include dual substrate growth limitations, and the relative growth limiting characteristics of two substrates are evaluated. (C) 1997 Elsevier Science Ltd.
Resumo:
Triterpenoids are pentacyclic secondary metabolites present in many terrestrial plants. Natural triterpenoids have been reported to exhibit anti-inflammatory and anti-carcinogenic activities. Here, we show that modifications of ring A of boswellic acid (2 cyano, 3 enone) resulted in a highly active growth inhibitory, anti-inflammatory, pro-differentiative and anti-tumour triterpenoid compound called cyano enone of methyl boswellates (CEMB). This compound showed cytotoxic activity on a number of cancer cell lines with IC50 ranging from 0.2 to 0.6 mu M. CEMB inhibits DNA synthesis and induces apoptosis in A549 cell line at 0.25 mu M and 1 mu M concentrations, respectively. CEMB induces adipogenic differentiation in 3T3-L1 cells at a concentration of 0.1 mu M. Finally, administration of CEMB intra-tumourally significantly inhibited the growth of C6 glioma tumour xenograft in immuno-compromised mice. Collectively, these results suggest that CEMB is a very potent anti-tumour compound.
Resumo:
Potassium titanyl phosphate (KTP) and its isomorphs have received enormous attention in the last 2 decades. In particular, KTP assumes importance due to its large nonlinear optic and electrooptic coefficients together with the broad thermal and angular acceptance for second harmonic generation. This article provides an overview of the material aspects, structural, physical, and chemical properties and device feasibility of the KTP family of crystals. Some of the current areas of research and development along with their significance in understanding the physical properties as well as device applications are addressed. Optical waveguide fabrication processes and characteristics with their relevance to the present-day technology are highlighted. Studies performed so far have enabled us to understand the fundamental aspects of these materials and what needs to be pursued vigorously is the exploitation of their device applications to the maximum extent.
Resumo:
Incremental diffusion couple experiments are conducted to determine the average interdiffusion coefficient and the intrinsic diffusion coefficients of the species in the Ni6Nb7 (mu phase) in the Ni-Nb system. Further, the tracer diffusion coefficients are calculated from the knowledge of thermodynamic parameters. The diffusion rate of Ni is found to be higher than that of Nb, which indicates higher defect concentration in the Ni sublattice.
Resumo:
Often, wrong conclusions about the mobilities of species are drawn from the position of the Kirkendall marker plane or voids in the interdiffusion zone. To clarify, I have discussed the growth mechanism of the phases and the position of the marker plane depending on the relative mobilities of the species. The formation of different kinds of voids in the interdiffusion zone is discussed. Further, the microstructure that could be found because of the Kirkendall effect is also explained.
Resumo:
Treeing in polyethylene based nanocomposite samples as well as unfilled polyethylene samples were studied using 50Hz ac voltage. The tree inception voltage was observed for different types of samples. The tree initiation time as well as the tree growth patterns at a fixed ac voltage have also been studied. The results show that there is an improvement in tree inception voltage with nano filler loading in polyethylene. Different tree growth patterns for both the unfilled polyethylene and the polyethylene nanocomposites have been observed. A slower tree growth was observed in polyethylene nanocomposites. The partial discharge characteristics of unfilled and nano filled polyethylene samples during the electrical tree growth period was also studied. Decrease in PD magnitude as well as in the number of pd pulses with electrical tree growth duration in polyethylene nanocomposites has also been observed. The possible reasons for the improvement in electrical tree growth and PD resistance with the addition of nano fillers are discussed.
Resumo:
Current analytical work on the effect of convection on the late stages of spinodal decomposition in liquids is briefly described. The morphology formed during the spinodal decomposition process depends on the relative composition of the two species. Droplet spinodal decomposition occurs when the concentration of one of the species is small. Convective transport has a significant effect on the scaling laws in the late-stage coarsening of droplets in translational or shear flows. In addition, convective transport could result in an attractive interaction between non-Brownian droplets which could lead to coalescence. The effect of convective transport for the growth of random interfaces in a near-symmetric quench was analysed using an area distribution function, which gives the distribution of surface area of the interface in curvature space. It was found that the curvature of the interface decreases proportional to time t in the late stages of spinodal decomposition, and the surface area also decreases proportional to t.
Resumo:
Tracer diffusion coefficients are calculated in different phases in the Mo-Si system from diffusion couple experiments using the data available on thermodynamic parameters. Following, possible atomic diffusion mechanism of the species is discussed based on the crystal structure. Unusual diffusion behaviour is found in the Mo(5)Si(3) and Mo(3)Si phases, which indicate the nature of defects present on different sublattices. Further the growth mechanism of the phases is discussed and morphological evolution during interdiffusion is explained. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A study of the deposition of aluminium oxide films by low-pressure metalorganic chemical vapour deposition from the complex aluminium acetylacetonate, in the absence of an oxidant gas, has been carried out. Depositions on to Si(100), stainless steel, and TiN-coated cemented carbide are found to be smooth, shiny, and blackish. SIMS, XPS and TEM analyses reveal that films deposited at temperatures as low as 600 degreesC contain small crystallites Of kappa-Al2O3, embedded in an amorphous matrix rich in graphitic carbon. Optical and scanning electron microscopy reveal a surface morphology made up of spherulites that suggests that film growth might involve a melting process. A nucleation and growth mechanism, involving the congruent melting clusters of precursor molecules on the hot substrate surface, is therefore invoked to explain these observations. An effort has been made experimentally to verify this proposed mechanism. (C) 2002 Elsevier Science B.V. All rights reserved.