366 resultados para CENTER-DOT-HE
Resumo:
The molecular and crystal structures of 4-ethynylcyanobenzene arereported. The packing of molecules in the crystal is found to be homologous with the crystal structures of HCN, cyanoacetylene and 4-cyano-4'-ethynylbiphenyl. Alternatively, these four crystals could be said to constitute a structural homologous series. The influence of C-H center dot center dot center dot N hydrogen bonding in directing a linear supramolecular arrangement of molecules with ethynyl and cyano groups at opposite ends, is illustrated. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This article presents the optical absorption and emission properties of Pr3+ and Nd3+ doped two different mixed alkali chloroborate glass matrices of the type 70B(2)O(3)center dot xLiCl center dot(30 - x)NaCl and 70B(2)O(3)center dot xLiCl center dot(30 - x)KCl (x = 5, 10, 15.20 and 25). The variation of Judd-Ofelt parameters (Omega(2), Omega(4) and Omega(6)), total radiative transition probabilities (A(T)), radiative lifetimes (tau(R)) and emission cross-sections (sigma(p)) with the variation of alkali contents in the glass matrix have been discussed in detail. The changes in the peak wavelengths of the hypersensitive transition and intensity parameters with x are correlated to the structural changes in the host matrix. The estimated radiative lifetimes of certain excited states of Pr3+ and Nd3+ in these two glass matrices are reported. Peak stimulated emission cross-sections (sigma(p)) are reported for the observed emission transitions of Pr3+ and Nd3+ ions. Branching ratios (beta) of the observed emission transitions obtained from the Judd-Ofelt theory are compared with the values obtained from the emission spectra. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Colloid of palladium nanoparticles has been prepared by the Solvated Metal Atom Dispersion (SMAD) method. Reaction of Pd(0) nanopowder obtained upon precipitation from the colloid, with ammonia borane (H3N center dot BH3, AB) in aqueous solutions at room temperature results in the generation of active hydrogen atoms. The active hydrogen atoms either combine with one another resulting in H-2 evolution or diffuse into the Pd lattice to afford PdHx. Diffusion of hydrogen atoms leads to an expansion of the Pd lattice. The diffused hydrogen atoms are distributed uniformly over the entire particle. These features were established using powder XRD and electron microscopy studies. The H-1 NMR spectral studies of PdHx before and after desorption of H-2 revealed that the hydrogen atoms trapped inside Pd lattice are hydridic in nature. Desorption of hydrogen from PdHx did not result in complete reversibility suggesting that some hydrogen atoms are strongly trapped inside the Pd lattice. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
Resumo:
The structures of two dehydropentapeptides, Boc-Pro-Delta Phe-Val-Delta Phe-Ala-OMe (I) and Boc-Pro-Delta Phe-Gly-Delta Phe-Ala-OMe (II) (Boc: t-butoxycarbonyl), have been determined by nuclear magnentic resonance (NMR), circular dichroism (CD), and X-ray, crystallographic studies. The peptide I assumes a S-shaped flat beta-bend structure, characterized by two partially overlapping type II beta-bends and absence of a second 1 <- 4 (N4-H center dot center dot center dot O1') intramolecular hydrogen bond. This is in contrast to the generally observed 3(10)-helical conformation in peptides with Delta Phe at alternate positions. This report describes the novel conformation assumed by peptide I and compares it with that of the conserved tip of the V3 loop of the HIV-1 envelope glycoprotein gp120 (sequence, G:P319 to F:P324, PDB code IACY). The tip of the V3 loop also assumes a S-shaped conformation with Arg:P322, making an intramolecular side-chain-backbone interaction with the carbonyl oxygen of Gly:P319. Interestingly, in peptide I, C(gamma)HVal(3) makes a similar side-chain-backbone C-H center dot center dot center dot O hydrogen bond with the carbonyl oxygen of the Boc group. The observed overall similarity indicates the possible use of the peptide as a viral antagonist or synthetic antigen. Peptide 11 adopts a unique turn followed by a 3(10)-helix. Both peptides I and II are classical examples of stabilization of unusual structures in oligopeptides.
Resumo:
p-aminobenzoate could be intercalated into the anionic clay, Ni3Zn2(OH)(8)(OAc)(2)center dot 2H(2)O at a high pH (similar to 10). When the pH was reduced to similar to 7 while washing colloidal dispersion due to delamination was observed. The development of partial positive charge on the amine end of the intercalated anion causes repulsion between the layers leading to delamination and colloidal dispersion of monolayers in water. The layers could be restacked from the colloid to form the parent solid either by increasing the pH or by evaporation.
Resumo:
We have prepared a new nanocomposite polymer electrolyte using nanoparticles of hydrotalcite, an anionic clay, as the filler. Hydrotalcite has the chemical composition [M-1-x(2+) M-x(3+) (OH)(2)](x+) [A(x/n)(n-)center dot mH(2)O] where M2+ is a divalent cation (e.g. Mg2+, Ni2+, Co2+,etc.) and M3+ is a trivalent cation (e.g. Al3+, Fe3+, Cr3+, etc.). A(n-) is an anion intercalated between the positively charged double hydroxide layers. The nanoparticles of [Mg0.67Al0.33 (OH)(2)] [(CO3)(0.17)center dot mH(2)O] were prepared by the co-precipitation method (average particle size as observed by TEM similar to 50 nm) and were doped into poly(ethylene glycol) PEG (m.w.2000) complexed with LiCIO4. Samples with different wt.% of hydrotalcite were prepared and characterized using XRD, DSC, TGA, impedance spectroscopy and NMR. Ionic conductivity for the pristine sample, similar to 7.3 x 10(-7) S cm(-1), was enhanced to a maximum of = 1.1 x 10(-5) S cm(-1) for 3.6 wt.% nanoparticle doped sample. We propose that the enhancement of ionic conductivity is caused by percolation effects of the high conductivity paths provided by interfaces between the nanoparticles and the polymer electrolyte. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Ferrocene-appended copper(II) complexes [Cu( Fc-tpy)(B)](ClO4)(2) (1-3) and [Cu(Ph-tpy)(dppz)](ClO4)(2) (4) as control, where Fc-tpy is 4'-ferroceny1-2,2':6',2 ''-terpyridine, Ph-tpy is 4'-pheny1-2,2':6',2 ''-terpyridine, and B is a phenanthroline base, viz., 1,10-phenanthroline (phen, 1), dipyridoquinoxaline (dpq, 2), and dipyridophenazine (dppz, 3), were prepared and structurally characterized, and their DNA binding, photoactivated DNA cleavage activity, and cytotoxic properties were studied [Fe = (eta(5)-C5H4)Fe-11(eta(5)-C5H5)]. Complexes 1 and 3 as hexafluorophosphate salts were structurally characterized by X-ray crystallography. Molecular structures of [Cu(Fc-tpy)(phen)](PF6)(2) (1a) and [Cu(Fc-tpy)(dppz)](PF6)(2)center dot MeCN (3a center dot MeCN) show a distorted square-pyramidal geometry at copper(II), with the Fc-tpy ligand and the phenanthroline base showing respective tridentate and bidentate binding modes. The phenanthroline base exhibits axial-equatorial bonding, while the Fc-tpy ligand binds at the basal plane. The complexes showed quasi-reversible cyclic voltammetric responses near 0.45 and -0.3 V vs SCE in aqueous DMF-0.1 M KCl assignable to the Fc(+)-Fc and Cu(II) Cu(1) redox couples, respectively. The complexes bind to DNA, giving K-b values of 1.4 x 10(4) to 5.6 x 10(5) M-1 in the order 4 similar to 3 > 2 > 1. Thermal denaturation and viscometric titration data suggest groove and/or partial intercalative mode of DNA binding of the complexes. The complexes showed chemical nuclease activity in the presence of 3-mercaptopropionic acid (0.5 mM) or H2O2 (0.25 mM). Complexes 2-4 showed plasmid DNA cleavage activity in visible light, forming (OH)-O-center dot radicals. The Fc-tpy complex 3 showed better DNA photocleavage activity than its Ph-tpy analogue. The ferrocene moiety in the dppz complex 3 makes it more photocytotoxic than the Ph-tpy analogue 4 in HeLa cells.
Resumo:
A series of molecular complexes, both co-crystals and salts, of a triazole drug-alprazolam-with carboxylic acids, boric acid, boronic acids, and phenols have been analyzed with respect to heterosynthons present in the crystal structures. In all cases, the triazole ring behaves as an efficient hydrogen bond acceptor with the acidic coformers. The hydrogen bond patterns exhibited with aromatic carboxylic acids were found to depend on the nature and position of the substituents. Being a strong acid, 2,6-dihydroxybenzoic acid forms a salt with alprazolam. With aliphatic dicarboxylic acids alprazolam forms hydrates and the water molecules play a central role in synthon formation and crystal packing. The triazole ring makes two distinct heterosynthons in the molecular complex with boric acid. Boronic acids and phenols form consistent hydrogen bond patterns, and these are seemingly independent of the substitutional effects. Boronic acids form noncentrosymmetric cyclic synthons, while phenols form O-H center dot center dot center dot N hydrogen bonds with the triazole ring. (C) 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:3743-3753, 2010.
Resumo:
Three new phosphonoacetate hybrid frameworks based on the actinide elements uranium and thorium have been synthesized. The compounds [C4N2H14][(UO2)(2)(O3PCH2COO)(2)]center dot H2O, I,[C4N2H14][(UO2)(2)(C2O4)(O3PCH2COOH)(2)], II, and Th(H2O)(2)(O3PCH2COO)(C2O4)(0.5). H2O, III, are built up from the connectivity between the metal polyhedra and the phosphonoacetate/oxalate units. Compound II has been prepared using a solvent-free approach, by a solid state reaction at 150 degrees C. It has been shown that II can also be prepared through a room temperature mechanochemical (grinding) route. The layer arrangement in III closely resembles to that observed in I. The compounds have been characterized by powder X-ray diffraction, IR spectroscopy, thermogravimetric analysis, and fluorescence studies.
Resumo:
Dodecylsulphate-intercalated zinc hydroxysalt, Zn-5(OH)(8)(DS)(2)center dot mH(2)O delaminates to give monolayer colloidal dispersions in alcohols such as 1-butanol and ethylene glycol. The extent of delamination and the stability of the colloidal dispersion are comparable to those of layered double hydroxides. The solvothermal decomposition of the colloidal dispersion of the hydroxysalt in ethylene glycol yields a bimodal ZnO having a nanotubular structure decorated with nanosheets. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
The reaction of pyrimidine-2-carbonitrile, NaN3 in the presence of Co(NO3)(2)center dot 6H(2)O or MnCl2 center dot 4H(2)O leads to the formation of complexes Co(pmtz)(mu(1,3)-N-3)(H2O)](n) (1) and Mn(pmtz)(mu(1,3)-N-3)(H2O)](n) (2) respectively, under hydrothermal condition pmtz =5-(pyrimidyl)tetrazolate]. These two complexes have been fully characterized by single crystal X-ray diffraction. Complex 1 crystallizes in a non-centrosymmetric space group Aba2 in the orthorhombic system and is found to exhibit ferroelectric behavior, whereas complex 2 crystallizes in the P2(1)/c space group in the monoclinic system. Variable temperature magnetic characterizations in the temperature range of 2-300 K indicate that complex 1 is a canted antiferromagnet (weak ferromagnet) with T-c = 15.9 K. Complex 1 represents a unique example of a multiferroic coordination polymer containing tetrazole as a co-ligand. Complex 2 is a one-dimensional chain of Mn(II) bridged by a well-known antiferromagnetic coupler end-to-end azido ligand. In contrast to the role played by the end-to-end azido pathway in most of the transition metal complexes, complex 2 showed unusual ferromagnetic behavior below 40 K because of spin canting.
Resumo:
In the title compound, C26H23FN2, the dihedral angle between the 4-fluorophenyl ring and the adjacent phenyl ring is 62.3 (1)degrees. The crystal structure is stabilized by C-H center dot center dot center dot pi interactions.
Resumo:
In this paper, we describe the effect of some commonly used thiourea-based antithyroid drugs and their analogues on the peroxidase-catalyzed nitration reactions. The nitration of bovine serum albumin (BSA) and cytochrome c was studied using the antibody against 3-nitro-L-tyrosine. This study reveals that the thione-based antithyroid drugs effectively inhibit lactoperoxidase (LPO)-catalyzed nitration of BSA. These compounds show very weak inhibition towards the nitration of cytochrome c. Some of these compounds also inhibit myeloperoxidase (MPO)-catalyzed nitration of L-tyrosine. A structure-activity correlation study on the peroxidase-catalyzed nitration of L-tyrosine reveals that the presence of thione/selone moiety is important for the inhibition. Although the presence of a free N-H group adjacent to C=S moiety is necessary for most of the thiones to inhibit the LPO-catalyzed nitration, the corresponding selones do not require the presence of any free N-H group for their activity. Furthermore, experiments with different concentrations of H2O2 suggest that the antithyroid drugs and related thiones inhibit the nitration reaction mainly by coordinating to the Fe(III)-center of the enzyme active site as previously proposed for the inhibition of peroxidase-catalyzed iodination. On the other hand, the selenium compounds inhibit the nitration by scavenging H2O2 without interacting with the enzyme active site. This assumption is based on the observations that catalase effectively inhibits tyrosine nitration by scavenging H2O2, which is one of the substrates for the nitration. In contrast, superoxide dismutase (SOD) does not alter the nitration reactions, indicating the absence of superoxide radical anion (O-2 center dot(-)) during the peroxidase-catalyzed nitration reactions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Five new gallium arsenate compounds C2N2H10]Ga(H2AsO4)(HAsO4)(2)]center dot H2O, I; C2N2H10]Ga(OH)(AsO4)](2), II; C2N2H10]GaF(AsO4)](2), III; C3N2H12]Ga(OH)(AsO4)](2), IV; Ga2F3(AsO4)(HAsO4)]center dot 2H(3)O, V, have been synthesized under hydrothermal conditions and the structures determined employing single crystal X-ray diffraction studies. All the structures consist of octahedral gallium and tetrahedral arsenate units connected together forming a hierarchy of structures. Thus, one- (I), two- (II and IV) and three-dimensionally (III and V) extended structures have been observed. The Ga-O(H)/F-Ga connectivity in some of the structures suggests the coordination requirements posed by the octahedral gallium in these compounds. The observation of only one type of secondary building unit in the structures of III (SBU-4) and V (spiro-5) is unique and noteworthy. All the compounds have been characterized by a variety of techniques that include powder XRD, IR, and TGA. (C) 2010 Elsevier B. V. All rights reserved.
Resumo:
Research on structure and magnetic properties of polynuclear metal complexes to understand the structural and chemical factors governing the electronic exchange coupling mediated by multi-atom bridging ligands is of growing interest. Hydrothermal treatment of Ni(NO3)(2)center dot 6H(2)O with N-(4-carboxyphenyl)iminodiacetic acid N-4(H(3)CPIDA)] at 150 degrees C yielded a 3D coordination polymer of general formula Ni-3{N-4( CPIDA)}(2)(H2O)(3)]center dot 6H(2)O (1). An analogous network of general formula Co-3{N-3(CPIDA)}(2)(H2O)(3)]center dot 3H(2)O (2) was synthesized using N-(3-carboxyphenyl) iminodiacetic acid N-3(H(3)CPIDA)] in combination with Co(NO3)(2)center dot 6H(2)O under identical reaction condition. Both the complexes contain trinuclear secondary building unit, and crystallized in monoclinic system with space groups C2/c (1) and P2(1)/c (2), respectively. Variable temperature magnetic characterization of these complexes in the temperature range of 2-300 K indicated the presence of overall ferromagnetic and antiferromagnetic behavior for 1 and 2, respectively. Density functional theory calculations (B3LYP functional) were performed for further insight on the trinuclear units to provide a qualitative theoretical interpretation on the overall magnetic behavior of the complexes 1 and 2. (C) 2010 Elsevier B.V. All rights reserved.