225 resultados para Biology, Molecular|Biology, Microbiology
Resumo:
Pathogenic mycobacteria employ several immune evasion strategies such as inhibition of class II transactivator (CIITA) and MHC-II expression, to survive and persist in host macrophages. However, precise roles for specific signaling components executing down-regulation of CIITA/MHC-II have not been adequately addressed. Here, we demonstrate that Mycobacterium bovis bacillus Calmette-Guerin (BCG)-mediated TLR2 signaling-induced iNOS/NO expression is obligatory for the suppression of IFN-gamma-induced CIITA/MHC-II functions. Significantly, NOTCH/PKC/MAPK-triggered signaling cross-talk was found critical for iNOS/NO production. NO responsive recruitment of a bifunctional transcription factor, KLF4, to the promoter of CIITA during M. bovis BCG infection of macrophages was essential to orchestrate the epigenetic modifications mediated by histone methyltransferase EZH2 or miR-150 and thus calibrate CIITA/MHC-II expression. NO-dependent KLF4 regulated the processing and presentation of ovalbumin by infected macrophages to reactive T cells. Altogether, our study delineates a novel role for iNOS/NO/KLF4 in dictating the mycobacterial capacity to inhibit CIITA/MHC-II-mediated antigen presentation by infected macrophages and thereby elude immune surveillance.
Resumo:
The multiple short introns in Schizosaccharomyces pombe genes with degenerate cis sequences and atypically positioned polypyrimidine tracts make an interesting model to investigate canonical and alternative roles for conserved splicing factors. Here we report functions and interactions of the S. pombe slu7(+) (spslu7(+)) gene product, known from Saccharomyces cerevisiae and human in vitro reactions to assemble into spliceosomes after the first catalytic reaction and to dictate 3' splice site choice during the second reaction. By using a missense mutant of this essential S. pombe factor, we detected a range of global splicing derangements that were validated in assays for the splicing status of diverse candidate introns. We ascribe widespread, intron-specific SpSlu7 functions and have deduced several features, including the branch nucleotide-to-3' splice site distance, intron length, and the impact of its A/U content at the 5' end on the intron's dependence on SpSlu7. The data imply dynamic substrate-splicing factor relationships in multiintron transcripts. Interestingly, the unexpected early splicing arrest in spslu7-2 revealed a role before catalysis. We detected a salt-stable association with U5 snRNP and observed genetic interactions with spprp1(+), a homolog of human U5-102k factor. These observations together point to an altered recruitment and dependence on SpSlu7, suggesting its role in facilitating transitions that promote catalysis, and highlight the diversity in spliceosome assembly.
Resumo:
CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) play a critical role in the maintenance of immune tolerance. Intravenous immunoglobulin (IVIg), a therapeutic preparation of normal pooled human IgG, expands Tregs in various experimental models and in patients. However, the cellular and molecular mechanisms by which IVIg expands Tregs are relatively unknown. As Treg expansion in the periphery requires signaling by antigen-presenting cells such as dendritic cells (DCs) and IVIg has been demonstrated to modulate DC functions, we hypothesized that IVIg induces distinct signaling events in DCs that subsequently mediate Treg expansion. We demonstrate that IVIg expands Tregs via induction of cyclooxygenase (COX)-2-dependent prostaglandin E2 (PGE(2)) in human DCs. However, costimulatory molecules of DCs such as programmed death ligands, OX40 ligand, and inducible T-cell costimulator ligands were not implicated. Inhibition of PGE(2) synthesis by COX-2 inhibitors prevented IVIg-mediated Treg expansion in vitro and significantly diminished IVIg-mediated Treg expansion in vivo and protection from disease in experimental autoimmune encephalomyelitis model. IVIg-mediated COX-2 expression, PGE(2) production, and Treg expansion were mediated in part via interaction of IVIg and F(ab('))(2) fragments of IVIg with DC-specific intercellular adhesion molecule-3-grabbing nonintegrin. Our results thus uncover novel cellular and molecular mechanism by which IVIg expands Tregs.
Resumo:
The t(10;14) translocation involving the HOX11 gene is found in several T-cell leukemia patients. Previous efforts to determine the causes of HOX11 fragility were not successful. The role of non-B DNA structures is increasingly becoming an important cause of genomic instability. In the present study, bioinformatics analysis revealed two G-quadruplex-forming motifs at the HOX11 breakpoint cluster. Gel shift assays showed formation of both intra- and intermolecular G-quadruplexes, the latter being more predominant. The structure formation was dependent on four stretches of guanines, as revealed by mutagenesis. Circular dichroism analysis identified parallel conformations for both quadruplexes. The non-B DNA structure could block polymerization during replication on a plasmid, resulting in consistent K K+-dependent pause sites, which were abolished upon mutation of G-motifs, thereby demonstrating the role of the stretches of guanines even on double-stranded DNA. Extrachromosomal assays showed that the G-quadruplex motifs could block transcription, leading to reduced expression of green fluorescent protein (GFP) within cells. More importantly, sodium bisulfite modification assay showed the single-stranded character at regions I and II of HOX11 in the genome. Thus, our findings suggest the occurrence of G-quadruplex structures at the HOX11 breakpoint region, which could explain its fragility during the t(10;14) translocation.
Resumo:
Glioblastoma (GBM) is the most common, malignant adult primary tumor with dismal patient survival, yet the molecular determinants of patient survival are poorly characterized. Global methylation profile of GBM samples (our cohort; n = 44) using high-resolution methylation microarrays was carried out. Cox regression analysis identified a 9-gene methylation signature that predicted survival in GBM patients. A risk-score derived from methylation signature predicted survival in univariate analysis in our and The Cancer Genome Atlas (TCGA) cohort. Multivariate analysis identified methylation risk score as an independent survival predictor in TCGA cohort. Methylation risk score stratified the patients into low-risk and high-risk groups with significant survival difference. Network analysis revealed an activated NF-kappa B pathway association with high-risk group. NF-kappa B inhibition reversed glioma chemoresistance, and RNA interference studies identified interleukin-6 and intercellular adhesion molecule-1 as key NF-kappa B targets in imparting chemoresistance. Promoter hypermethylation of neuronal pentraxin II (NPTX2), a risky methylated gene, was confirmed by bisulfite sequencing in GBMs. GBMs and glioma cell lines had low levels of NPTX2 transcripts, which could be reversed upon methylation inhibitor treatment. NPTX2 overexpression induced apoptosis, inhibited proliferation and anchorage-independent growth, and rendered glioma cells chemosensitive. Furthermore, NPTX2 repressed NF-kappa B activity by inhibiting AKT through a p53-PTEN-dependent pathway, thus explaining the hypermethylation and downregulation of NPTX2 in NF-kappa B-activated high-risk GBMs. Taken together, a 9-gene methylation signature was identified as an independent GBM prognosticator and could be used for GBM risk stratification. Prosurvival NF-kappa B pathway activation characterized high-risk patients with poor prognosis, indicating it to be a therapeutic target. (C) 2013 AACR.
Resumo:
Restriction enzyme KpnI is a HNH superfamily endonuclease requiring divalent metal ions for DNA cleavage but not for binding. The active site of KpnI can accommodate metal ions of different atomic radii for DNA cleavage. Although Mg2+ ion higher than 500 mu M mediates promiscuous activity, Ca2+ suppresses the promiscuity and induces high cleavage fidelity. Here, we report that a conservative mutation of the metal-coordinating residue D148 to Glu results in the elimination of the Ca2+-mediated cleavage but imparting high cleavage fidelity with Mg2+. High cleavage fidelity of the mutant D148E is achieved through better discrimination of the target site at the binding and cleavage steps. Biochemical experiments and molecular dynamics simulations suggest that the mutation inhibits Ca2+-mediated cleavage activity by altering the geometry of the Ca2+-bound HNH active site. Although the D148E mutant reduces the specific activity of the enzyme, we identified a suppressor mutation that increases the turnover rate to restore the specific activity of the high fidelity mutant to the wild-type level. Our results show that active site plasticity in coordinating different metal ions is related to KpnI promiscuous activity, and tinkering the metal ion coordination is a plausible way to reduce promiscuous activity of metalloenzymes.
Resumo:
Background: Genetic variants of NOD2 are linked to inflammatory bowel disease (IBD) etiology. Results: DSS model of colitis in wild-type and inducible nitric-oxide synthase (iNOS) null mice revealed that NOD2-iNOS/NO-responsive microRNA-146a targets NUMB gene facilitating Sonic hedgehog (SHH) signaling. Conclusion: miR-146a-mediated NOD2-SHH signaling regulates gut inflammation. Significance: Identification of novel regulators of IBD provides new insights into pathophysiology and development of new therapy concepts. Inflammatory bowel disease (IBD) is a debilitating chronic inflammatory disorder of the intestine. The interactions between enteric bacteria and genetic susceptibilities are major contributors of IBD etiology. Although genetic variants with loss or gain of NOD2 functions have been linked to IBD susceptibility, the mechanisms coordinating NOD2 downstream signaling, especially in macrophages, during IBD pathogenesis are not precisely identified. Here, studies utilizing the murine dextran sodium sulfate model of colitis revealed the crucial roles for inducible nitric-oxide synthase (iNOS) in regulating pathophysiology of IBDs. Importantly, stimulation of NOD2 failed to activate Sonic hedgehog (SHH) signaling in iNOS null macrophages, implicating NO mediated cross-talk between NOD2 and SHH signaling. NOD2 signaling up-regulated the expression of a NO-responsive microRNA, miR-146a, that targeted NUMB gene and alleviated the suppression of SHH signaling. In vivo and ex vivo studies confirmed the important roles for miR-146a in amplifying inflammatory responses. Collectively, we have identified new roles for miR-146a that established novel cross-talk between NOD2-SHH signaling during gut inflammation. Potential implications of these observations in therapeutics could increase the possibility of defining and developing better regimes to treat IBD pathophysiology.
Resumo:
The transcription from rrn and a number of other promoters is regulated by initiating ribonucleotides (iNTPs) and guanosine tetra/penta phosphate (p)ppGpp], either by strengthening or by weakening of the RNA polymerase (RNAP)-promoter interactions during initiation. Studies in Escherichia coli revealed the importance of a sequence termed discriminator, located between -10 and the transcription start site of the responsive promoters in this mode of regulation. Instability of the open complex at these promoters is attributed to the lack of stabilizing interactions between the suboptimal discriminator and the 1.2 region of sigma 70 (Sig70) in RNAP holoenzyme. We demonstrate a different pattern of interaction between the promoters and sigma A (SigA) of Mycobacterium tuberculosis to execute similar regulation. Instead of cytosine and methionine, thymine at three nucleotides downstream to -10 element and leucine 232 in SigA are found to be essential for iNTPs and pppGpp mediated response at the rrn and gyr promoters of the organism. The specificity of the interaction is substantiated by mutational replacements, either in the discriminator or in SigA, which abolish the nucleotide mediated regulation in vitro or in vivo. Specific yet distinct bases and the amino acids appear to have co-evolved' to retain the discriminator-sigma 1.2 region regulatory switch operated by iNTPs/pppGpp during the transcription initiation in different bacteria.
Resumo:
Dendrimers as vectors for gene delivery were established, primarily by utilizing few prominent dendrimer types so far. We report herein studies of DNA complexation efficacies and gene delivery vector properties of a nitrogen-core poly(propyl ether imine) (PETIM) dendrimer, constituted with 22 tertiary amine internal branches and 24 primary amines at the periphery. The interaction of the dendrimer with pEGFPDNA was evaluated through UV-vis, circular dichroism (CD) spectral studies, ethidium bromide fluorescence emission quenching, thermal melting, and gel retardation assays, from which most changes to DNA structure during complexation was found to occur at a weight ratio of dendrimer:DNA similar to 2:1. The zeta potential measurements further confirmed this stoichiometry at electroneutrality. The structure of a DNA oligomer upon dendrimer complexation was simulated through molecular modeling and the simulation showed that the dendrimer enfolded DNA oligomer along both major and minor grooves, without causing DNA deformation, in 1:1 and 2:1 dendrimer-to-DNA complexes. Atomic force microscopy (AFM) studies on dendrimer-pEGFP DNA complex showed an increase in the average z-height as a result of dendrimers decorating the DNA, without causing a distortion of the DNA structure. Cytotoxicity studies involving five different mammalian cell lines, using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] (MTT) assay, reveal the dendrimer toxicity profile (IC50) values of similar to 400-1000 mu g mL(-1), depending on the cell line tested. Quantitative estimation, using luciferase assay, showed that the gene transfection was at least 100 times higher when compared to poly(ethylene imine) branched polymer, having similar number of cationic sites as the dendrimer. The present study establishes the physicochemical behavior of new nitrogen-core PETIM dendrimer-DNA complexes, their lower toxicities, and efficient gene delivery vector properties.
Resumo:
Anaplastic astrocytoma (AA; Grade III) and glioblastoma (GBM; Grade IV) are diffusely infiltrating tumors and are called malignant astrocytomas. The treatment regimen and prognosis are distinctly different between anaplastic astrocytoma and glioblastoma patients. Although histopathology based current grading system is well accepted and largely reproducible, intratumoral histologic variations often lead to difficulties in classification of malignant astrocytoma samples. In order to obtain a more robust molecular classifier, we analysed RT-qPCR expression data of 175 differentially regulated genes across astrocytoma using Prediction Analysis of Microarrays (PAM) and found the most discriminatory 16-gene expression signature for the classification of anaplastic astrocytoma and glioblastoma. The 16-gene signature obtained in the training set was validated in the test set with diagnostic accuracy of 89%. Additionally, validation of the 16-gene signature in multiple independent cohorts revealed that the signature predicted anaplastic astrocytoma and glioblastoma samples with accuracy rates of 99%, 88%, and 92% in TCGA, GSE1993 and GSE4422 datasets, respectively. The protein-protein interaction network and pathway analysis suggested that the 16-genes of the signature identified epithelial-mesenchymal transition (EMT) pathway as the most differentially regulated pathway in glioblastoma compared to anaplastic astrocytoma. In addition to identifying 16 gene classification signature, we also demonstrated that genes involved in epithelial-mesenchymal transition may play an important role in distinguishing glioblastoma from anaplastic astrocytoma.
Resumo:
The fabrication of a mesoporous silica nanoparticle (MSN)-protamine hybrid system (MSN-PRM) is reported that selectively releases drugs in the presence of specific enzyme triggers present in the proximity of cancer cells. The enzyme trigger involved is a protease called trypsin, which is overexpressed in certain specific pathological conditions, such as inflammation and cancer. Overexpression of trypsin is known to be associated with invasion, metastasis, and growth in several cancers, such as leukemia, colon cancer, and colorectal cancer. The current system (MSN-PRM) consists of an MSN support in which mesopores are capped with an FDA-approved peptide drug protamine, which effectively blocks the outward diffusion of the drug molecules from the mesopores of the MSNs. On exposure to the enzyme trigger, the protamine cap disintegrates, opening up the molecular gates and releasing the entrapped drug molecules. The system exhibits minimal premature release in the absence of the trigger and selectively releases the encapsulated drugs in the presence of the proteases secreted by colorectal cancer cells. The ability of the MSN-PRM particles to deliver anticancer drugs to colorectal cancer cells has also been demonstrated. The hydrophobic drug is released into cancer cells subsequent to disintegration of the protamine cap, resulting in cell death. Drug-induced cell death in colorectal cancer cells is significantly enhanced when the hydrophobic drug that is known to degrade in aqueous environments is encapsulated in the MSN-PRM system in comparison to the free drug (P < 0.05). The system, which shows good biocompatibility and selective drug release, is a promising platform for cancer specific drug delivery.
Resumo:
Mitochondria are indispensable organelles implicated in multiple aspects of cellular processes, including tumorigenesis. Heat shock proteins play a critical regulatory role in accurately delivering the nucleus-encoded proteins through membrane-bound presequence translocase (Tim23 complex) machinery. Although altered expression of mammalian presequence translocase components had been previously associated with malignant phenotypes, the overall organization of Tim23 complexes is still unsolved. In this report, we show the existence of three distinct Tim23 complexes, namely, B1, B2, and A, involved in the maintenance of normal mitochondrial function. Our data highlight the importance of Magmas as a regulator of translocase function and in dynamically recruiting the J-proteins DnaJC19 and DnaJC15 to individual translocases. The basic housekeeping function involves translocases B1 and B2 composed of Tim17b isoforms along with DnaJC19, whereas translocase A is nonessential and has a central role in oncogenesis. Translocase B, having a normal import rate, is essential for constitutive mitochondrial functions such as maintenance of electron transport chain complex activity, organellar morphology, iron-sulfur cluster protein biogenesis, and mitochondrial DNA. In contrast, translocase A, though dispensable for housekeeping functions with a comparatively lower import rate, plays a specific role in translocating oncoproteins lacking presequence, leading to reprogrammed mitochondrial functions and hence establishing a possible link between the TIM23 complex and tumorigenicity.
Resumo:
We demonstrate the utility of the surface-enhanced Raman spectroscopy (SERS) to monitor conformational transitions in protein upon ligand binding. The changes in protein's secondary and tertiary structures were monitored using amide and aliphatic/aromatic side chain vibrations. Changes in these bands are suggestive of the stabilization of the secondary and tertiary structure of transcription activator protein C in the presence of Mg2+ ion, whereas the spectral fingerprint remained unaltered in the case of a mutant protein, defective in Mg2+ binding. The importance of the acidic residues in Mg2+ binding, which triggers an overall allosteric transition in the protein, is visualized in the molecular model. The present study thus opens up avenues toward the application of SERS as a potential tool for gaining structural insights into the changes occurring during conformational transitions in proteins.
Resumo:
Multi-species mating aggregations are crowded environments within which mate recognition must occur. Mating aggregations of fig wasps can consist of thousands of individuals of many species that attain sexual maturity simultaneously and mate in the same microenvironment, i.e, in syntopy, within the close confines of an enclosed globular inflorescence called a syconium - a system that has many signalling constraints such as darkness and crowding. All wasps develop within individual galled flowers. Since mating mostly occurs when females are still confined within their galls,, male wasps have the additional burden of detecting conspecific females that are ``hidden'' behind barriers consisting of gall walls. In Ficus racemosa, we investigated signals used by pollinating fig wasp males to differentiate conspecific females from females of other syntopic fig wasp species. Male Ceratosolen fusciceps could detect conspecific females using cues from galls containing females, empty galls, as well as cues from gall volatiles and gall surface hydrocarbons. In many figs, syconia are pollinated by single foundress wasps, leading to high levels of wasp inbreeding due to sibmating. In F. racemosa, as most syconia contain many foundresses, we expected male pollinators to prefer non-sib females to female siblings to reduce inbreeding. We used galls containing females from non-natal figs as a proxy for non-sibs and those from natal figs as a proxy for sibling females. We found that males preferred galls of female pollinators from natal figs. However, males were undecided when given a choice between galls containing non-pollinator females from natal syconia and pollinator females from non-natal syconia, suggesting olfactory imprinting by the natal syconial environment. (C) 2013 Elsevier Masson SAS. All rights reserved.