187 resultados para BORON-NITRIDE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A systematic study was done to understand the influence of volume fractions and bilayer spacings for metal/nitride multilayer coating using finite element method (FEM). An axisymmetric model was chosen to model the real situation by incorporating metal and substrate plasticity. Combinations of volume fractions and bilayer spacings were chosen for FEM analysis consistent with experimental results. The model was able to predict trends in cracking with respect to layer spacing and volume fraction. Metal layer plasticity is seen to greatly influence the stress field inside nitride. It is seen that the thicker metal induces higher tensile stresses inside nitride and hence leads to lower cracking loads. Thin metal layers < 10 nm were seen to have curved interfaces, and hence, the deformation mode was interfacial delamination in combination with edge cracking. There is an optimum seen with respect to volume fraction similar to 13% and metal layer thickness similar to 30 nm, which give maximum crack resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Boron oxide (B2O3) addition to pre-reacted K0.5Na0.5NbO3 (KNN) powders facilitated swift densification at relatively low sintering temperatures which was believed to be a key to minimize potassium and sodium loss. The base KNN powder was synthesized via solid-state reaction route. The different amounts (0.1-1 wt%) of B2O3 were-added, and ceramics were sintered at different temperatures and durations to optimize the amount of B2O3 needed to obtain KNN pellets with highest possible density and grain size. The 0.1 wt% B2O3-added KNN ceramics sintered at 1,100 A degrees C for 1 h exhibited higher density (97 %). Scanning electron microscopy studies confirmed an increase in average grain size with increasing B2O3 content at appropriate temperature of sintering and duration. The B2O3-added KNN ceramics exhibited improved dielectric and piezoelectric properties at room temperature. For instance, 0.1 wt% B2O3-added KNN ceramic exhibited d (33) value of 116 pC/N which is much higher than that of pure KNN ceramics. Interestingly, all the B2O3-added (0.1-1 wt%) KNN ceramics exhibited polarization-electric field (P vs. E) hysteresis loops at room temperature. The remnant polarization (P (r)) and coercive field (E (c)) values are dependent on the B2O3 content and crystallite size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deformation instabilities, such as shear cracking and grain boundary cavitation, which are observed in the secondary tensile region of Ti-6Al-4V alloy during compressive deformation in the (+)-phase field, do not form in Ti-6Al-4V-0.1B alloy when processed under the same conditions. This has been attributed to the microstructural modifications, e.g. the absence of grain boundary and adjacent grain boundary retained layers and a lower proportion of 90(o)-misoriented -colonies that occur with boron addition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microstructure and texture are known to undergo drastic modifications due to trace hypoeutectic boron addition (similar to 0.1wt.%) for various titanium alloys e.g. Ti-6Al-4V. The deformation behaviour of such an alloy Ti-6Al-4V-0.1B is investigated in the (+) phase field and compared against that of the base alloy Ti-6Al-4V studied under selfsame conditions. The deformation microstructures for the two alloys display bending and kinking of lamellae in near and softening via globularization of lamella in near phase regimes, respectively. The transition temperature at which pure slip based deformation changes to softening is lower for the boron added alloy. The presence of TiB particles is largely held attributable for the early softening of Ti-6Al-4V-0.1B alloy. The compression texture of both the alloys carry signature of pure phase defamation at lower temperature and phase transformation near the transus temperature. Texture is influenced by a complex interplay of the deformation and transformation processes in the intermediate temperature range. The contribution from phase transformation is prominent for Ti-6Al-4V-0.1B alloy at comparatively lower temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single-walled nanohorns (SWNHs) have been prepared by sub-merged arc discharge of graphite electrodes in liquid nitrogen. The samples were examined by scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. Nitrogen and boron doped SWNHs have been prepared by the sub-merged arc discharge method using melamine and elemental boron as precursors. Intensification of Raman D-band and stiffening of G-band has been observed in the doped samples. The electrical resistance of the SWNHs varies in opposite directions with nitrogen and boron doping. Functionalization of SWNHs through amidation has been carried out for solubilizing them in non-polar solvents. Water-soluble SWNHs have been produced by acid treatment and non-covalent functionalization with a coronene salt. SWNHs have been decorated with nanoparticles of Au, Ag and Pt. Interaction of electron donor (tetrathiafulvalene, TTF) and acceptor molecules (tetracyanoethylene, TCNE) with SWNHs has been investigated by Raman spectroscopy. Progressive softening and stiffening of Raman G-band has been observed respectively with increase in the concentration of TTF and TCNE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A facile synthetic route for a new class of organoborane compounds (Mes)(2)B-arene-acacH and (Mes)(2)Barene-acacBF2 (Mes = mesityl and arene = C6H4 or C6Me4) is reported. The new dyads exhibit intriguing photophysical properties. A small structural change in spacer connecting the two chromophores leads to fine tuning of photophysical properties. The dyad containing 2,3,5,6-tetramethyl phenyl spacer acts as a selective ``turn-on'' chemodosimetric sensor for cyanide ion. Steric crowding around the boron centre significantly alters anion binding events. From NMR titration studies it is established that fluoride and cyanide follow different binding mechanisms which lead to intriguing optical properties in the reported probes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Facile synthesis of triad 3 and tetrad 4 incorporating -B(Mes)(2) (Mes = mesityl (2,4,6-trimethylphenyl)), boron dipyrromethene (BODIPY), and triphenylamine is reported. Introduction of two dissimilar acceptors (triarylborane and BODIPY) on a single donor resulted in two distinct intramolecular charge transfer processes (amine-to-borane and amine-to-BODIPY). The absorption and emission properties of the new triad and tetrad are highly dependent on individual building units. The nature of electronic communication among the individual fluorophore units has been comprehensively investigated and compared with building units. Compounds 3 and 4 showed chromogenic and fluorogenic responses for small anions such as fluoride and cyanide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermo-mechanically processed Ti-6Al-4V alloy, with (0.1 wt.%) and without boron addition, has been subjected to tensile test under superplastic deformation conditions (Temperature, T = 850 degrees C and initial strain rate, (epsilon) over dot = 3 x 10(-4) s(-1)). The boron added alloy exhibited higher elongation (similar to 430%) in comparison to the base alloy without boron (similar to 365%). Superior ductility of the boron added alloy has been attributed to an enhanced alpha/beta interfacial boundary sliding. This was caused by riotous dynamic globularization leading to the abundant presence of equiaxed primary alpha grains with refined sizes and narrow distribution in the deforming microstructure. Cavities do occur around TiB particles during deformation; the cavities are, however, extremely localized and do not cause macroscopic cracking. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peripherally triarylborane decorated porphyrin (2) and its Zn(II) complex (3) have been synthesized. Compound 3 contains of two different Lewis acidic binding sites (Zn(II) and boron center). Unlike all previously known triarylborane based sensors, the optical responses of 3 toward fluoride and cyanide are distinctively different, thus enabling the discrimination of these two interfering anions. Metalloporphyrin 3 shows a multiple channel fluorogenic response toward fluoride and cyanide and also a selective visual colorimetric response toward cyanide. By comparison with model systems and from detailed photophysical studies on 2 and 3, we conclude that the preferential binding of fluoride occurs at the peripheral borane moieties resulting in the cessation of the EET (electronic energy transfer) process from borane to porphyrin core and with negligible negetive cooperative effects. On the other hand, cyanide binding occurs at the Zn(II) core leading to drastic changes in its absorption behavior which can be followed by the naked eye. Such changes are not observed when the boryl substituent is absent (e.g., Zn-TPP and TPP). Compounds 2 and 3 were also found to be capable of extracting fluoride from aqueous medium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two new dicyanovinyl (DCV) functionalized triarylboranes (Mes(2)B-pi-spacer-DCV, for 1: pi-spacer = C6H4, for 2: pi-spacer = 2,3,5,6-tetramethyl-phenyl) are reported. The molecular structures of 1 and 2 are similar except for the spacer which connects the boryl and DCV units. This small structural perturbation induces drastic changes in the optical properties of 1 and 2. Compound 2 shows weak dual fluorescence emission in nonpolar solvents and a stronger emission in polar solvents. Compound 1 is weakly fluorescent in polar environments but shows an intense single luminescence peak in less polar environments. Compound 1 exhibits a turn-off fluorescence response for both fluoride and cyanide: in contrast, 2 shows a turn on fluorescence response for both anions with different fluorescence signatures. The NMR titration studies reveal that for compound 2, fluoride binds to the boron centre and cyanide binds to the DCV unit. For compound 1, the fluoride ion binds to the boron center, whereas the CN- binds to both the Ar3B and DCV units.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three new NPI-BODIPY dyads 1-3 (NPI = 1,8-naphthalimide, BODIPY = boron-dipyrromethene) were synthesized, characterized, and studied. The NPI and BODIPY moieties in these dyads are electronically separated by oxoaryl bridges, and the compounds only differ structurally with respect to methyl substituents on the BODIPY fluorophore. The NPI and BODIPY moieties retain their optical features in molecular dyads 1-3. Dyads 1-3 show dual emission in solution originating from the two separate fluorescent units. The variations of the dual emission in these compounds are controlled by the structural flexibilities of the systems. Dyads 13, depending on their molecular flexibilities, show considerably different spectral shapes and dissimilar intensity ratios of the two emission bands. The dyads also show significant aggregation-induced emission switching (AIES) on formation of nano-aggregates in THF/H2O with changes in emission color from green to red. Whereas the flexible and aggregation-prone compound 1 shows AIES, rigid systems with less favorable intermolecular interactions (i.e., 2 and 3) show aggregation-induced quenching of emission. Correlations of the emission intensity and structural flexibility were found to be reversed in solution and aggregated states. Photophysical and structural investigations suggested that intermolecular interactions (e. g., pi-pi stacking) play a major role in controlling the emission of these compounds in the aggregated state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stuffed fullerene-like nano clusters based on the approximately spherical B-84, (B-12@B-12@B-60, fragment of the beta-rhombohedral boron), are proposed using Wade's Rules and the criterion of overlap matching. Thus the fifty additional electrons required to make the B-84 skeleton electron sufficient, are provided by replacing 26 boron atoms by carbon atoms and 12 boron atoms by nitrogen atoms giving rise to C26B46N12. This particular combination has the added advantage of the fullerene surface made from C2B3N five-membered rings having less strain arising from the pyramidalization of the sp(2) hybridised trigonal planar carbon or nitrogen; the natural angle needed to have an optimum overlap is not far from the 31.7 degrees required for icosahedral symmetry. The advantage from overlap-matching can be further increased by capping the two pentagonal faces of the cluster by a Li atom each, keeping the electron count the same by replacing 12 carbon atoms with 12 boron atoms. DFT based computational results support these formulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contact damage in curved interface nano-layeredmetal/nitride (150 (ZrN)/10 (Zr) nm) multilayer is investigated in order to understand the role of interface morphology on contact damage under indentation. A finite element method (FEM) model was formulated with different wavelengths of 1000 nm, 500 nm, 250 nm and common height of 50 nm, which gives insight on the effect of different curvature on stress field generated under indentation. Elastic-plastic properties were assigned to the metal layer and substrate while the nitride layer was assigned perfectly elastic properties. Curved interface multilayers show delamination along the metal/nitride interface and vertical cracks emanating from the ends of the delamination. FEM revealed the presence of tensile stress normal to the interface even under the contact, along with tensile radial stresses, both present at the valley part of the curve, which leads to vertical cracks associated with interfacial delamination. Stress enhancement was seen to be relatively insensitive to curvature. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonpolar a-plane InN films were grown on r-plane sapphire substrate by plasma assisted molecular beam epitaxy with GaN underlayer. Effect of growth temperature on structural, morphological, and optical properties has been studied. The growth of nonpolar a-plane (1 1 -2 0) orientation was confirmed by high resolution X-ray diffraction study. The film grown at 500 degrees C shows better crystallinity with the rocking curve FWHM 0.67 degrees and 0.85 degrees along 0 0 0 1] and 1 - 1 0 0] directions, respectively. Scanning electron micrograph shows formation of Indium droplets at higher growth temperature. Room temperature absorption spectra show growth temperature dependent band gap variation from 0.74-0.81 eV, consistent with the expected Burstein-Moss effect. The rectifying behaviour of the I-V curve indicates the existence of Schottky barrier at the InN and GaN interface. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the effect of thin silicon nitride (Si3N4) induced tensile stress on the structural release of 200nm thick SOI beam, in the surface micro-machining process. A thin (20nm / 100nm) LPCVD grown Si3N4 is shown to significantly enhance the yield of released beam in wet release technique. This is especially prominent with increase in beam length, where the beams have higher tendency for stiction. We attribute this yield enhancement to the nitride induced tensile stress, as verified by buckling tendency and resonance frequency data obtained from optical profilometry and laser doppler vibrometry.