190 resultados para phytohemagglutinin P


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein structure comparison is essential for understanding various aspects of protein structure, function and evolution. It can be used to explore the structural diversity and evolutionary patterns of protein families. In view of the above, a new algorithm is proposed which performs faster protein structure comparison using the peptide backbone torsional angles. It is fast, robust, computationally less expensive and efficient in finding structural similarities between two different protein structures and is also capable of identifying structural repeats within the same protein molecule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Halloysite nanotubes (HNTs) of the dimension 50nm x 1-3 mu m (diameter x length) are utililized to fabricate the alloy composite by employing electroless/autocatalytic deposition technique. Electroless Ni-P-HNT binary alloy composite coatings are prepared successfully on low carbon steel. These nanotubes were made to get inserted/incorporated into nickel matrix and corresponding composites are examined for their electrochemical, mechanical and tribological performances and compared with that of plain Ni-P. The coatings were characterized using scanning electron microscopy (SEM) and Energy dispersive X-ray analysis (EDX) techniques to analyze surface nature and composition correspondingly. Small amount of incorporated HNTs made Ni-P deposits appreciable enhancement and betterment in corrosion resistance, hardness and friction resistance. This drastic improvement in the properties reflects the effect of addition of HNTs into Ni-P matrix leading to the development of high performance Ni-P-HNT composite coatings. (C) 2012 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fidelity of the folding pathways being encoded in the amino acid sequence is met with challenge in instances where proteins with no sequence homology, performing different functions and no apparent evolutionary linkage, adopt a similar fold. The problem stated otherwise is that a limited fold space is available to a repertoire of diverse sequences. The key question is what factors lead to the formation of a fold from diverse sequences. Here, with the NAD(P)-binding Rossmann fold domains as a case study and using the concepts of network theory, we have unveiled the consensus structural features that drive the formation of this fold. We have proposed a graph theoretic formalism to capture the structural details in terms of the conserved atomic interactions in global milieu, and hence extract the essential topological features from diverse sequences. A unified mathematical representation of the different structures together with a judicious concoction of several network parameters enabled us to probe into the structural features driving the adoption of the NAD(P)-binding Rossmann fold. The atomic interactions at key positions seem to be better conserved in proteins, as compared to the residues participating in these interactions. We propose a ``spatial motif'' and several ``fold specific hot spots'' that form the signature structural blueprints of the NAD(P)-binding Rossmann fold domain. Excellent agreement of our data with previous experimental and theoretical studies validates the robustness and validity of the approach. Additionally, comparison of our results with statistical coupling analysis (SCA) provides further support. The methodology proposed here is general and can be applied to similar problems of interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We measure hyperfine structure in the metastable P-3(2) state of Yb-173 and extract the nuclear magnetic octupole moment. We populate the state using dipole-allowed transitions through the P-3(1) and S-3(1) states. We measure frequencies of hyperfine transitions of the P-3(2) -> S-3(1) line at 770 nm using a Rb-stabilized ring cavity resonator with a precision of 200 kHz. Second-order corrections due to perturbations from the nearby P-3(1) and P-1(1) states are below 30 kHz. We obtain the hyperfine coefficients as A = -742.11(2) MHz and B = 1339.2(2) MHz, which represent a two orders-of-magnitude improvement in precision, and C = 0.54(2) MHz. From atomic structure calculations, we obtain the nuclear moments quadrupole Q = 2.46(12) b and octupole Omega = -34.4(21) b x mu(N). DOI: 10.1103/PhysRevA.87.012512

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we address a physics based closed form model for the energy band gap (E-g) and the transport electron effective mass in relaxed and strained 100] and 110] oriented rectangular Silicon Nanowire (SiNW). Our proposed analytical model along 100] and 110] directions are based on the k.p formalism of the conduction band energy dispersion relation through an appropriate rotation of the Hamiltonian of the electrons in the bulk crystal along 001] direction followed by the inclusion of a 4 x 4 Luttinger Hamiltonian for the description of the valance band structure. Using this, we demonstrate the variation in Eg and the transport electron effective mass as function of the cross-sectional dimensions in a relaxed 100] and 110] oriented SiNW. The behaviour of these two parameters in 100] oriented SiNW has further been studied with the inclusion of a uniaxial strain along the transport direction and a biaxial strain, which is assumed to be decomposed from a hydrostatic deformation along 001] with the former one. In addition, the energy band gap and the effective mass of a strained 110] oriented SiNW has also been formulated. Using this, we compare our analytical model with that of the extracted data using the nearest neighbour empirical tight binding sp(3)d(5)s* method based simulations and has been found to agree well over a wide range of device dimensions and applied strain. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the direct band-to-band tunneling (BTBT) in a reverse biased molybdenum disulfide (MoS2) nanoribbon p-n junction by analyzing the complex band structure obtained from semiempirical extended Huckel method under relaxed and strained conditions. It is demonstrated that the direct BTBT is improbable in relaxed monolayer nanoribbon; however, with the application of certain uniaxial tensile strain, the material becomes favorable for it. On the other hand, the relaxed bilayer nanoribbon is suitable for direct BTBT but becomes unfavorable when the applied uniaxial tensile or compressive strain goes beyond a certain limit. Considering the Wentzel-Kramers-Brillouin approximation, we evaluate the tunneling probability to estimate the tunneling current for a small applied reverse bias. Reasonably high tunneling current in the MoS2 nanoribbons shows that it can take advantage over graphene nanoribbon in future tunnel field-effect transistor applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal oxidation process of the indium nitride (InN) nanorods (NRs) was studied. The SEM studies reveal that the cracked and burst mechanism for the formation of indium oxide (In2O3) nanostructures by oxidizing the InN NRs at higher temperatures. XRD results confirm the bcc crystal structure of the as prepared In2O3 nanostructures. Strong and broad photoluminescence spectrum located at the green to red region with maximum intensity at 566 nm along with a weak ultraviolet emission at 338 nm were observed due to oxygen vacancy levels and free excitonic transitions, respectively. The valence band onset energy of 2.1 eV was observed from the XPS valence band spectrum, clearly justifies the alignment of Fermi level to the donor level created due to the presence of oxygen vacancies which were observed in the PL spectrum. The elemental ratio In:O in as prepared In2O3 was found to be 42:58 which is in close agreement with the stoichiometric value of 40:60. A downward shift was observed in the Raman peak positions due to a possible phonon confinement effect in the nanoparticles formed in bursting mechanism. Such single junction devices exhibit promising photovoltaic performance with fill factor and conversion efficiency of 21% and 0.2%, respectively, under concentrated AM1.5 illumination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accuracy of pairing of the anticodon of the initiator tRNA (tRNA(fMet)) and the initiation codon of an mRNA, in the ribosomal P-site, is crucial for determining the translational reading frame. However, a direct role of any ribosomal element(s) in scrutinizing this pairing is unknown. The P-site elements, m(2)G966 (methylated by RsmD), m(5)C967 (methylated by RsmB) and the C-terminal tail of the protein S9 lie in the vicinity of tRNA(fMet). We investigated the role of these elements in initiation from various codons, namely, AUG, GUG, UUG, CUG, AUA, AUU, AUC and ACG with tRNA(CAU)(fmet) (tRNA(fMet) with CAU anticodon); CAC and CAU with tRNA(GUG)(fme); UAG with tRNA(GAU)(fMet) using in vivo and computational methods. Although RsmB deficiency did not impact initiation from most codons, RsmD deficiency increased initiation from AUA, CAC and CAU (2- to 3.6-fold). Deletion of the S9 C-terminal tail resulted in poorer initiation from UUG, GUG and CUG, but in increased initiation from CAC, CAU and UAC codons (up to 4-fold). Also, the S9 tail suppressed initiation with tRNA(CAU)(fMet)lacking the 3GC base pairs in the anticodon stem. These observations suggest distinctive roles of 966/967 methylations and the S9 tail in initiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the quest for more efficient photoanodes in the photoelectrochemical oxidation processes for organic pollutant degradation and mineralisation in water treatment, we present the synthesis, characterisation and photoelectrochemical application of expanded graphite-TiO2 composite (EG-TiO2) prepared using the sol-gel method with organically modified silicate. The Brunauer-Emmett-Teller surface area analyser, ultraviolet-visible diffuse reflectance, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometry, Raman spectrometry and X-ray photoelectron spectroscopy were employed for the characterisation of the composites. The applicability of the EG-TiO2 as photoanode material was investigated by the photoelectrochemical degradation of p-nitrophenol as a target pollutant in a 0.1 M Na2SO4 (pH 7) solution at a current density of 5 mA cm(-2). After optimising the TiO2 loading, initial p-nitrophenol concentration, pH and current density, a removal efficiency of 62% with an apparent kinetic rate constant of 10.4 x 10(-3) min(-1) was obtained for the photoelectrochemical process as compared to electrochemical oxidation and photolysis, where removal efficiencies of 6% and 24% were obtained respectively after 90 min. Furthermore, the EG-TiO2 electrode was able to withstand high current density due to its high stability. The EG-TiO2 electrode was also used to degrade 0.3 x 10(-4) M methylene blue and 0.1 x 10(-4) M Eosin Yellowish, leading to 94% and 47% removal efficiency within 120 reaction time. This confirms the suitability of the EG-TiO2 electrode to degrade other organic pollutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extend our analysis of transverse single spin asymmetry in electroproduction of J/psi to include the effect of the scale evolution of the transverse momentum dependent (TMD) parton distribution functions and gluon Sivers function. We estimate single spin asymmetry for JLab, HERMES, COMPASS, and eRHIC energies using the color evaporation model of charmonium production, using an analytically obtained approximate solution of TMD evolution equations discussed in the literature. We find that there is a reduction in the asymmetry compared with our predictions for the earlier case considered by us, wherein the Q(2) dependence came only from DGLAP evolution of the unpolarized gluon densities and a different parametrization of the TMD Sivers function was used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ribosomal P-site hosts the peptidyl-tRNAs during translation elongation. Which P-site elements support these tRNA species to maintain codon-anticodon interactions has remained unclear. We investigated the effects of P-site features of methylations of G966, C967, and the conserved C-terminal tail sequence of Ser, Lys, and Arg (SKR) of the S9 ribosomal protein in maintenance of the translational reading frame of an mRNA. We generated Escherichia coli strains deleted for the SKR sequence in S9 ribosomal protein, RsmB (which methylates C967), and RsmD (which methylates G966) and used them to translate LacZ from its +1 and -1 out-of-frame constructs. We show that the S9 SKR tail prevents both the +1 and -1 frameshifts and plays a general role in holding the P-site tRNA/peptidyl-tRNA in place. In contrast, the G966 and C967 methylations did not make a direct contribution to the maintenance of the translational frame of an mRNA. However, deletion of rsmB in the S9 Delta 3 background caused significantly increased -1 frameshifting at 37 degrees C. Interestingly, the effects of the deficiency of C967 methylation were annulled when the E. coli strain was grown at 30 degrees C, supporting its context-dependent role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report focuses on the structural and optical properties of the GaN films grown on p-Si (100) substrates along with photovoltaic characteristics of GaN/p-Si heterojunctions fabricated with substrate nitridation and in absence of substrate nitridation. The high resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), Raman and photoluminescence (PL) spectroscopic studies reveal that the significant enhancement in the structural as well as in the optical properties of GaN epifilms grown with silicon nitride buffer layer when compared with the sample grown without silicon nitride buffer layer. The low temperature PL shows a free excitonic (FX) emission peak at 3.51 eV at the temperature of 5 K with a very narrow line width of 35 meV. Temperature dependent PL spectra follow the Varshni equation well and peak energy blue shifts by similar to 63 meV from 300 to 5 K. Raman data confirms the strain free nature and reasonably good crystallinity of the films. The GaN/p-Si heterojunctions fabricated without substrate nitridation show a superior photovoltaic performance compared to the devices fabricated in presence of substrate nitridation. The discussions have been carried out on the junction properties. Such single junction devices exhibit a promising fill factor and conversion efficiency of 23.36 and 0.12 %, respectively, under concentrated AM1.5 illumination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the tetrahedral face of methane has an electron rich centre and can act as a hydrogen bond acceptor, substitution of one of its hydrogens with some electron withdrawing group (such as -F/OH) can make the opposite face electron deficient. Electrostatic potential calculations confirm this and high level quantum calculations show interactions between the positive face of methanol/methyl fluoride and electron rich centers of other molecules such as H2O. Analysis of the wave functions of atoms in molecules shows the presence of an unusual C center dot center dot center dot Y interaction, which could be called `carbon bonding'. NBO analysis and vibrational frequency shifts confirm the presence of this interaction. Given the properties of alkyl groups bonded to electronegative elements in biological molecules, such interactions could play a significant role, which is yet to be recognized. This and similar interactions could give an enthalpic contribution to what is called the `hydrophobic interactions'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P bodies are 100-300 nm sized organelles involved in mRNA silencing and degradation. A total of 60 human proteins have been reported to localize to P bodies. Several human SNPs contribute to complex diseases by altering the structure and function of the proteins. Also, SNPs alter various transcription factors binding, splicing and miRNA regulatory sites. Owing to the essential functions of P bodies in mRNA regulation, we explored computationally the functional significance of SNPs in 7 P body components such as XRN1, DCP2, EDC3, CPEB1, GEMIN5, STAU1 and TRIM71. Computational analyses of non-synonymous SNPs of these components was initiated using well utilized publicly available software programs such as the SIFT, followed by PolyPhen, PANTHER, MutPred, I-Mutant-2.0 and PhosSNP 1.0. Functional significance of noncoding SNPs in the regulatory regions were analysed using FastSNP. Utilizing miRSNP database, we explored the role of SNPs in the context that alters the miRNA binding sites in the above mentioned genes. Our in silico studies have identified various deleterious SNPs and this cataloguing is essential and gives first hand information for further analysis by in vitro and in vivo methods for a better understanding of maintenance, assembly and functional aspects of P bodies in both health and disease. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct current electrodeposition of Co-P alloy coatings were carried out using gluconate bath and they were characterized by employing techniques like XRD, FESEM, DSC and XPS. Broad XRD lines demonstrate the amorphous nature of Co-P coatings. Spherical and rough nodules are observed on the surface of coatings as seen from FESEM images. Three exothermic peaks around 290, 342 and 390 degrees C in DSC profiles of Co-P coatings could be attributed to the crystallization and formation of Co2P phase in the coatings. As-deposited coatings consist of Co metal and oxidized Co species as revealed by XPS studies. Bulk alloy P (P delta-) as well as oxidized P (P5+) are present on the surface of coatings. Concentrations of Co metal and P delta- increase with successive sputtering of the coating. Observed microhardness value is 1005 HK when Co-P coating obtained from 10 g L-1 NaH2PO2 is heated at 400 degrees C that is comparable with hard chromium coatings.