225 resultados para brain size


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A scheme for stabilizing stochastic approximation iterates by adaptively scaling the step sizes is proposed and analyzed. This scheme leads to the same limiting differential equation as the original scheme and therefore has the same limiting behavior, while avoiding the difficulties associated with projection schemes. The proof technique requires only that the limiting o.d.e. descend a certain Lyapunov function outside an arbitrarily large bounded set. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics simulations have been performed on monatomic sorbates confined within zeolite NaY to obtain the dependence of entropy and self-diffusivity on the sorbate diameter. Previously, molecular dynamics simulations by Santikary and Yashonath J. Phys. Chem. 98, 6368 (1994)], theoretical analysis by Derouane J. Catal. 110, 58 (1988)] as well as experiments by Kemball Adv. Catal. 2, 233 (1950)] found that certain sorbates in certain adsorbents exhibit unusually high self-diffusivity. Experiments showed that the loss of entropy for certain sorbates in specific adsorbents was minimum. Kemball suggested that such sorbates will have high self-diffusivity in these adsorbents. Entropy of the adsorbed phase has been evaluated from the trajectory information by two alternative methods: two-phase and multiparticle expansion. The results show that anomalous maximum in entropy is also seen as a function of the sorbate diameter. Further, the experimental observation of Kemball that minimum loss of entropy is associated with maximum in self-diffusivity is found to be true for the system studied here. A suitably scaled dimensionless self-diffusivity shows an exponential dependence on the excess entropy of the adsorbed phase, analogous to excess entropy scaling rules seen in many bulk and confined fluids. The two trajectory-based estimators for the entropy show good semiquantitative agreement and provide some interesting microscopic insights into entropy changes associated with confinement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite their small size, some insects, such as crickets, can produce high amplitude mating songs by rubbing their wings together. By exploiting structural resonance for sound radiation, crickets broadcast species-specific songs at a sharply tuned frequency. Such songs enhance the range of signal transmission, contain information about the signaler's quality, and allow mate choice. The production of pure tones requires elaborate structural mechanisms that control and sustain resonance at the species-specific frequency. Tree crickets differ sharply from this scheme. Although they use a resonant system to produce sound, tree crickets can produce high amplitude songs at different frequencies, varying by as much as an octave. Based on an investigation of the driving mechanism and the resonant system, using laser Doppler vibrometry and finite element modeling, we show that it is the distinctive geometry of the crickets' forewings (the resonant system) that is responsible for their capacity to vary frequency. The long, enlarged wings enable the production of high amplitude songs; however, as a mechanical consequence of the high aspect ratio, the resonant structures have multiple resonant modes that are similar in frequency. The drive produced by the singing apparatus cannot, therefore, be locked to a single frequency, and different resonant modes can easily be engaged, allowing individual males to vary the carrier frequency of their songs. Such flexibility in sound production, decoupling body size and song frequency, has important implications for conventional views of mate choice, and offers inspiration for the design of miniature, multifrequency, resonant acoustic radiators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the tree cricket Oecanthus henryi, females are attracted by male calls and can choose between males. To make a case for female choice based on male calls, it is necessary to examine male call variation in the field and identify repeatable call features that are reliable indicators of male size or symmetry. Female preference for these reliable call features and the underlying assumption behind this choice, female preference for larger males, also need to be examined. We found that females did prefer larger males during mating, as revealed by the longer mating durations and longer spermatophore retention times. We then examined the correlation between acoustic and morphological features and the repeatability of male calls in the field across two temporal scales, within and across nights. We found that carrier frequency was a reliable indicator of male size, with larger males calling at lower frequencies at a given temperature. Simultaneous playback of male calls differing in frequency, spanning the entire range of natural variation at a given temperature, revealed a lack of female preference for low carrier frequencies. The contrasting results between the phonotaxis and mating experiments may be because females are incapable of discriminating small differences in frequency or because the change in call carrier frequency with temperature renders this cue unreliable in tree crickets. (C) 2012 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanical properties of ZnS nanowires and thin films are studied as a function of size and growth direction using all-atom molecular dynamics simulations. Using the stress-strain relationship we extract Young's moduli of nanowires and thin films at room temperature. Our results show that Young's modulus of 0001] nanowires has strong size dependence. On the other hand, 01 (1) over bar0] nanowires do not exhibit a strong size dependence of Young's modulus in the size range we have investigated. We provide a microscopic understanding of this behavior on the basis of bond stretching and contraction due to the rearrangement of atoms in the surface layers. The ultimate tensile strengths of the nanowires do not show much size dependence. To investigate the mechanical behavior of ZnS in two dimensions, we calculate Young's modulus of thin films under tensile strain along the 0001] direction. Young's modulus of thin films converges to the bulk value more rapidly than that of the 0001] nanowire.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using all-atom molecular dynamics simulation, we have studied the effect of size and temperature on the strain induced phase transition of wurtzite CdSe nanowires. The wurtzite structure transforms into a five-fold coordinated structure under uniaxial strain along the c axis. Our results show that lower temperature and smaller size of the nanowires stabilize the five-fold coordinated phase which is not a stable structure in bulk CdSe. High reversibility of this transformation with a very small heat loss will make these nanowires suitable for building efficient nanodevices. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4734990]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the threshold voltage modeling of ultra-thin (1 nm-5 nm) silicon body double-gate (DG) MOSFETs using self-consistent Poisson-Schrodinger solver (SCHRED). We define the threshold voltage (V th) of symmetric DG MOSFETs as the gate voltage at which the center potential (Φ c) saturates to Φ c (s a t), and analyze the effects of oxide thickness (t ox) and substrate doping (N A) variations on V th. The validity of this definition is demonstrated by comparing the results with the charge transition (from weak to strong inversion) based model using SCHRED simulations. In addition, it is also shown that the proposed V t h definition, electrically corresponds to a condition where the inversion layer capacitance (C i n v) is equal to the oxide capacitance (C o x) across a wide-range of substrate doping densities. A capacitance based analytical model based on the criteria C i n v C o x is proposed to compute Φ c (s a t), while accounting for band-gap widening. This is validated through comparisons with the Poisson-Schrodinger solution. Further, we show that at the threshold voltage condition, the electron distribution (n(x)) along the depth (x) of the silicon film makes a transition from a strong single peak at the center of the silicon film to the onset of a symmetric double-peak away from the center of the silicon film. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Room temperature, uniaxial compression creep experiments were performed on micro-/nano-sized pillars (having diameters in the range of 250-2000 nm) of a Zr-based bulk metallic glass (BMG) to investigate the influence of sample size on the time-dependent plastic deformation behavior in amorphous alloys. Experimental results reveal that plastic deformation indeed occurs at ambient temperature and at stresses that are well below the nominal quasi-static yield stress. At a given stress, higher total strains accrue in the smaller specimens. In all cases, plastic deformation was found to be devoid of shear bands, i.e., it occurs in homogeneous manner. The stress exponent obtained from the slope of the linear relation between strain rate and applied stress also shows a strong size effect, which is rationalized in terms of the amount of free volume created during deformation and the surface-to-volume ratio of the pillar. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diffusion equation-based modeling of near infrared light propagation in tissue is achieved by using finite-element mesh for imaging real-tissue types, such as breast and brain. The finite-element mesh size (number of nodes) dictates the parameter space in the optical tomographic imaging. Most commonly used finite-element meshing algorithms do not provide the flexibility of distinct nodal spacing in different regions of imaging domain to take the sensitivity of the problem into consideration. This study aims to present a computationally efficient mesh simplification method that can be used as a preprocessing step to iterative image reconstruction, where the finite-element mesh is simplified by using an edge collapsing algorithm to reduce the parameter space at regions where the sensitivity of the problem is relatively low. It is shown, using simulations and experimental phantom data for simple meshes/domains, that a significant reduction in parameter space could be achieved without compromising on the reconstructed image quality. The maximum errors observed by using the simplified meshes were less than 0.27% in the forward problem and 5% for inverse problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, size dependent linear free flexural vibration behavior of functionally graded (FG) nanoplates are investigated using the iso-geometric based finite element method. The field variables are approximated by non-uniform rational B-splines. The nonlocal constitutive relation is based on Eringen's differential form of nonlocal elasticity theory. The material properties are assumed to vary only in the thickness direction and the effective properties for the FG plate are computed using Mori-Tanaka homogenization scheme. The accuracy of the present formulation is demonstrated considering the problems for which solutions are available. A detailed numerical study is carried out to examine the effect of material gradient index, the characteristic internal length, the plate thickness, the plate aspect ratio and the boundary conditions on the global response of the FG nanoplate. From the detailed numerical study it is seen that the fundamental frequency decreases with increasing gradient index and characteristic internal length. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate here that mesoporous tin dioxide (abbreviated M-SnO2) with a broad pore size distribution can be a prospective anode in lithium-ion batteries. M-SnO2 with pore size ranging between 2 and 7.5 nm was synthesized using a hydrothermal procedure involving two different surfactants of slightly different sizes, and characterized. The irreversible capacity loss that occurs during the first discharge and charge cycle is 890 mAh g(-1), which is smaller than the 1,010-mAh g(-1) loss recorded for mesoporous SnO2 (abbreviated S-SnO2) synthesized using a single surfactant. After 50 cycles, the discharge capacity of M-SnO2 (504 mAh g(-1)) is higher than that of S-SnO2 (401 mAh g(-1)) and solid nanoparticles of SnO2 (abbreviated nano-SnO2 < 4 mAh g(-1)) and nano-SnO2. Transmission electron microscopy revealed higher disorder in the pore arrangement in M-SnO2. This, in turn imparts lower stiffness to M-SnO2 (elastic modulus, E (R) a parts per thousand aEuro parts per thousand 14.5 GPa) vis-a-vis S-SnO2 (E (R) a parts per thousand aEuro parts per thousand 20.5 GPa), as obtained using the nanoindentation technique. Thus, the superior battery performance of M-SnO2 is attributed to its intrinsic material mechanical property. The fluidity of the internal microstructure of M-SnO2 resulted in a lower degree of aggregation of Sn particles compared to S-SnO2 and nano-SnO2 structural stabilization and long-term cyclability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existence of an indentation size effect (ISE) in the onset of yield in a Zr-based bulk metallic glass (BMG) is investigated by employing spherical-tip nanoindentation experiments. Statistically significant data on the load at which the first pop-in in the displacement occurs were obtained for three different tip radii and in two different structural states (as-cast and structurally relaxed) of the BMG. Hertzian contact mechanics were employed to convert the pop-in loads to the maximum shear stress underneath the indenter. Results establish the existence of an ISE in the BMG of both structural states, with shear yield stress increasing with decreasing tip radius. Structural relaxation was found to increase the yield stress and decrease the variability in the data, indicating ``structural homogenization'' with annealing. Statistical analysis of the data was employed to estimate the shear transformation zone (STZ) size. Results of this analysis indicate an STZ size of similar to 25 atoms, which increases to similar to 34 atoms upon annealing. These observations are discussed in terms of internal structure changes that occur during structural relaxation and their interaction with the stressed volumes in spherical indentation of a metallic glass. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the size-dependent density of nanoparticles and nanostructured materials keeping the recent experimental results in mind. The density is predicted to increase with decreasing size for nanoparticles but it can decrease with size for nanostructured materials that corroborates the experimental results reported in the literature. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Turkevich-Frens synthesis starting conditions are expanded, ranging the gold salt concentrations up to 2 mM and citrate/gold(III) molar ratios up to 18:1. For each concentration of the initial gold salt solution, the citrate/gold(III) molar ratios are systematically varied from 2:1 to 18:1 and both the size and size distribution of the resulting gold nanoparticles are compared. This study reveals a different nanoparticle size evolution for gold salt solutions ranging below 0.8 mM compared to the case of gold salt solutions above 0.8 mM. In the case of Au3+]<0.8 mM, both the size and size distribution vary substantially with the citrate/gold(III) ratio, both displaying plateaux that evolve inversely to Au3+] at larger ratios. Conversely, for Au3+]>= 0.8 mM, the size and size distribution of the synthesized gold nanoparticles continuously rise as the citrate/gold(III) ratio is increased. A starting gold salt concentration of 0.6 mM leads to the formation of the most monodisperse gold nanoparticles (polydispersity index<0.1) for a wide range of citrate/gold(III) molar ratios (from 4:1 to 18:1). Via a model for the formation of gold nanoparticles by the citrate method, the experimental trends in size could be qualitatively predicted:the simulations showed that the destabilizing effect of increased electrolyte concentration at high initial Au3+] is compensated by a slight increase in zeta potential of gold nanoparticles to produce concentrated dispersion of gold nanoparticles of small sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bubble size in a gas liquid ejector has been measured using the image technique and analysed for estimation of Sauter mean diameter. The individual bubble diameter is estimated by considering the two dimensional contour of the ellipse, for the actual three dimensional ellipsoid in the system by equating the volume of the ellipsoid to that of the sphere. It is observed that the bubbles are of oblate and prolate shaped ellipsoid in this air water system. The bubble diameter is calculated based on this concept and the Sauter mean diameter is estimated. The error between these considerations is reported. The bubble size at different locations from the nozzle of the ejector is presented along with their percentage error which is around 18%.