236 resultados para Unstable Periodic Point
Resumo:
The unsteady viscous flow in the vicinity of an axisymmetric stagnation point of an infinite circular cylinder is investigated when both the free stream velocity and the velocity of the cylinder vary arbitrarily with time. The cylinder moves either in the same direction as that of the free stream or in the opposite direction. The flow is initially (t = 0) steady and then at t > 0 it becomes unsteady. The semi-similar solution of the unsteady Navier-Stokes equations has been obtained numerically using an implicit finite-difference scheme. Also the self-similar solution of the Navier-Stokes equations is obtained when the velocity of the cylinder and the free stream velocity vary inversely as a linear function of time. For small Reynolds number, a closed form solution is obtained. When the Reynolds number tends to infinity, the Navier-Stokes equations reduce to those of the two-dimensional stagnation-point flow. The shear stresses corresponding to stationary and the moving cylinder increase with the Reynolds number. The shear stresses increase with time for the accelerating flow but decrease with increasing time for the decelerating flow. For the decelerating case flow reversal occurs in the velocity profiles after a certain instant of time. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
We drive a d-dimensional Heisenberg magnet using an anisotropic current. The continuum Langevin equation is analysed using a dynamical renormalization group and numerical simulations. We discover a rich steady-state phase diagram, including a critical point in a new nonequilibrium universality class, and a spatiotemporally chaotic phase. The latter may be controlled in a robust manner to target spatially periodic steady states with helical order.
Resumo:
In this paper, we present a differential-geometric approach to analyze the singularities of task space point trajectories of two and three-degree-of-freedom serial and parallel manipulators. At non-singular configurations, the first-order, local properties are characterized by metric coefficients, and, geometrically, by the shape and size of a velocity ellipse or an ellipsoid. At singular configurations, the determinant of the matrix of metric coefficients is zero and the velocity ellipsoid degenerates to an ellipse, a line or a point, and the area or the volume of the velocity ellipse or ellipsoid becomes zero. The degeneracies of the velocity ellipsoid or ellipse gives a simple geometric picture of the possible task space velocities at a singular configuration. To study the second-order properties at a singularity, we use the derivatives of the metric coefficients and the rate of change of area or volume. The derivatives are shown to be related to the possible task space accelerations at a singular configuration. In the case of parallel manipulators, singularities may lead to either loss or gain of one or more degrees-of-freedom. For loss of one or more degrees-of-freedom, ther possible velocities and accelerations are again obtained from a modified metric and derivatives of the metric coefficients. In the case of a gain of one or more degrees-of-freedom, the possible task space velocities can be pictured as growth to lines, ellipses, and ellipsoids. The theoretical results are illustrated with the help of a general spatial 2R manipulator and a three-degree-of-freedom RPSSPR-SPR parallel manipulator.
Resumo:
We describe simple one-dimensional models of passive (no energy input, no control), generally dissipative, vertical hopping and one-ball juggling. The central observation is that internal passive system motions can conspire to eliminate collisions in these systems. For hopping, two point masses are connected by a spring and the lower mass has inelastic collisions with the ground. For juggling, a lower point-mass hand is connected by a spring to the ground and an upper point-mass ball is caught with an inelastic collision and then re-thrown into gravitational free flight. The two systems have identical dynamics. Despite inelastic collisions between non-zero masses, these systems have special symmetric energy-conserving periodic motions where the collision is at zero relative velocity. Additionally, these special periodic motions have a non-zero sized, one-sided region of attraction on the higher-energy side. For either very large or very small mass ratios, the one-sided region of attraction is large. These results persist for mildly non-linear springs and non-constant gravity. Although non-collisional damping destroys the periodic motions, small energy injection makes the periodic motions stable, with a two-sided region of attraction. The existence of such special energy conserving solutions for hopping and juggling points to possibly useful strategies for both animals and robots. The lossless motions are demonstrated with a table-top experiment.
Resumo:
Wear of metals in dry sliding is dictated by the material response to traction. This is demonstrated by considering the wear of aluminium and titanium alloys. In a regime of stable homogeneous deformation the material approaching the surface from the bulk passes through microprocessing zones of flow, fracture, comminution and compaction to generate a protective tribofilm that retains the interaction in the mild wear regime. If the response leads to microstructural instabilities such as adiabatic shear bands, the near-surface zone consists of stacks of 500 nm layers situated parallel to the sliding direction. Microcracks are generated below the surface to propagate normally away from the surface though microvoids situated in the layers, until it reaches a depth of 10-20 mum. A rectangular laminate debris consisting of a 20-40 layer stack is produced, The wear in this mode is severe.
Resumo:
Backoff algorithms are typically employed in multiple-access networks (e.g., Ethernet) to recover from packet collisions. In this letter, we propose and carry out the analysis for three types of link-layer backoff schemes, namely, linear backoff, exponential backoff, and geometric backoff, on point-to-point wireless fading links where packet errors occur nonindependently. In such a scenario, the backoff schemes are shown to achieve better energy efficiency without compromising much on the link layer throughput performance.
Resumo:
The forced oscillations due to a point forcing effect in an infinite or contained, inviscid, incompressible, rotating, stratified fluid are investigated taking into account the density variation in the inertia terms in the linearized equations of motion. The solutions are obtained in closed form using generalized Fourier transforms. Solutions are presented for a medium bounded by a finite cylinder when the oscillatory forcing effect is acting at a point on the axis of the cylinder. In both the unbounded and bounded case, there exist characteristic cones emanating from the point of application of the force on which either the pressure or its derivatives are discontinuous. The perfect resonance existing at certain frequencies in an unbounded or bounded homogeneous fluid is avoided in the case of a confined stratified fluid.
Resumo:
We report an experimental study of a new type of turbulent flow that is driven purely by buoyancy. The flow is due to an unstable density difference, created using brine and water, across the ends of a long (length/diameter=9) vertical pipe. The Schmidt number Sc is 670, and the Rayleigh number (Ra) based on the density gradient and diameter is about 108. Under these conditions the convection is turbulent, and the time-averaged velocity at any point is ‘zero’. The Reynolds number based on the Taylor microscale, Reλ, is about 65. The pipe is long enough for there to be an axially homogeneous region, with a linear density gradient, about 6–7 diameters long in the midlength of the pipe. In the absence of a mean flow and, therefore, mean shear, turbulence is sustained just by buoyancy. The flow can be thus considered to be an axially homogeneous turbulent natural convection driven by a constant (unstable) density gradient. We characterize the flow using flow visualization and particle image velocimetry (PIV). Measurements show that the mean velocities and the Reynolds shear stresses are zero across the cross-section; the root mean squared (r.m.s.) of the vertical velocity is larger than those of the lateral velocities (by about one and half times at the pipe axis). We identify some features of the turbulent flow using velocity correlation maps and the probability density functions of velocities and velocity differences. The flow away from the wall, affected mainly by buoyancy, consists of vertically moving fluid masses continually colliding and interacting, while the flow near the wall appears similar to that in wall-bound shear-free turbulence. The turbulence is anisotropic, with the anisotropy increasing to large values as the wall is approached. A mixing length model with the diameter of the pipe as the length scale predicts well the scalings for velocity fluctuations and the flux. This model implies that the Nusselt number would scale as Ra1/2Sc1/2, and the Reynolds number would scale as Ra1/2Sc−1/2. The velocity and the flux measurements appear to be consistent with the Ra1/2 scaling, although it must be pointed out that the Rayleigh number range was less than 10. The Schmidt number was not varied to check the Sc scaling. The fluxes and the Reynolds numbers obtained in the present configuration are much higher compared to what would be obtained in Rayleigh–Bénard (R–B) convection for similar density differences.
Explicit and Optimal Exact-Regenerating Codes for the Minimum-Bandwidth Point in Distributed Storage
Resumo:
We formulate a low energy effective Hamiltonian to study superlattices in bilayer graphene (BLG) using a minimal model which supports quadratic band touching points. We show that a one dimensional (1D) periodic modulation of the chemical potential or the electric field perpendicular to the layers leads to the generation of zero-energy anisotropic massless Dirac fermions and finite energy Dirac points with tunable velocities. The electric field superlattice maps onto a coupled chain model comprised of ``topological'' edge modes. 2D superlattice modulations are shown to lead to gaps on the mini-Brillouin zone boundary but do not, for certain symmetries, gap out the quadratic band touching point. Such potential variations, induced by impurities and rippling in biased BLG, could lead to subgap modes which are argued to be relevant to understanding transport measurements.